首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

2.
The process of nitrification in activated sludge was investigated. As the solid support for nitrifiers' growth a suspension of marble particles has been used. The results proved the possibility of successful nitrification of 100 mg l?1 NH4-N simultaneously with the removal of 600 mg l?1 COD.  相似文献   

3.
Efficient removal of phthalate esters (PE) in wastewater treatment plants (WWTP) is becoming an increasing priority in many countries. In this study, we examined the fate of dimethyl phthalate (DMP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and di-(2-ethylhexyl) phthalate (DEHP) in a full scale activated sludge WWTP with biological removal of nitrogen and phosphorus. The mean concentrations of DMP, DBP, BBP, and DEHP at the WWTP inlet were 1.9, 20.5, 37.9, and 71.9 μg/L, respectively. Less than 0.1%, 42%, 35%, and 96% of DMP, DBP, BBP, and DEHP was associated with suspended solids, respectively. The overall microbial degradation of DMP, DBP, BBP, and DEHP in the WWTP was estimated to be 93%, 91%, 90%, and 81%, respectively. Seven to nine percent of the incoming PE were recovered in the WWTP effluent. Factors affecting microbial degradation of DEHP in activated sludge were studied using [U-14C-ring] DEHP as tracer. First order rate coefficients for aerobic DEHP degradation were 1.0×10−2, 1.4×10−2, and 1.3×10−3 at 20, 32, and 43 °C, respectively. Aerobic degradation rates decreased dramatically under aerobic thermophilic conditions (<0.1×10−2 h−1 at 60 °C). The degradation rate under anoxic denitrifying conditions was 0.3×10−2 h−1, whereas the rate under alternating conditions (aerobic-anoxic) was 0.8×10−2 h−1. Aerobic DEHP degradation in activated sludge samples was stimulated 5-9 times by addition of a phthalate degrading bacterium. The phthalate degrading bacterium was isolated from activated sludge, and maintained a capacity for DEHP degradation while growing on vegetable oil. Collectively, the results of the study identified several controls of microbial PE degradation in activated sludge. These controls may be considered to enhance PE degradation in activated sludge WWTP with biological removal of nitrogen and phosphorus.  相似文献   

4.
AO-MBR工艺短程硝化处理高氨氮废水试验研究   总被引:1,自引:0,他引:1  
采用AO - MBR工艺短程硝化处理高氨氮废水,系统可以快速启动实现全程硝化.结果表明,AO - MBR工艺在温度为24 ~ 32℃,pH值为7.8 ~8.4,好氧池DO降至0.5 mg/L时,运行21天后全程硝化转变为稳定的短程硝化,氨氮去除率和亚硝酸盐氮积累率均大于90%;接种后及硝化类型转变时污泥浓度会大幅降低,运行中后期污泥浓度基本保持稳定.  相似文献   

5.
Complete nitrification of ammonia in partially treated domestic wastewater was demonstrated in a mixed culture chemostat. The optimal detention time of water in the chemostat for maximal nitrification was 6–7 days. In the field, a significant number of nitrifying bacteria was present in a wastewater reservoir, as well as in samples of inflowing water from the preceding anaerobic overloaded oxidation pond.  相似文献   

6.
Attempts were made for removing ammonia from synthetic wastewater under the presence of phenol, which is inhibitory to nitrification, by using a single-stage activated sludge process with cross-flow filtration. Activated sludge biomass which had been acclimated with phenol for over 15 years was used for the inoculum, and synthetic wastewater was continuously supplied to the process retaining biomass at 8000 mg VSS l(-1). Phenol was completely removed, and ammonia was simultaneously nitrified to nitrate; nitrification rate reached 200 mg N l(-1) d(-1) when phenol was removed at a rate up to 300 mg l(-1) d(-1). It was observed that 0-13% of the ammonia was removed via denitrification. Intermittent aeration enhanced the denitrification rate to 160 mg N l(-1) d(-1) by utilizing phenol. and approximately 24% of the denitrified nitrogen was recovered as nitrous oxide. Methanol, which is the most commonly used electron donor in conventional nitrogen removal processes, did not enhance the denitrification rate of the phenol-acclimated activated sludge used in this study, however phenol did. The results suggest that this process potentially works as a space- and energy-saving nitrogen removal process by utilizing substances inhibitory to nitrifiers as electron donors for denitrification.  相似文献   

7.
Pala A  Tokat E 《Water research》2002,36(11):2920-2925
The low biodegradability of many dyes and textile chemicals indicates that biological treatment is not always successful in the treatment of cotton textile wastewater, in terms of color removal. In this study, a specific organic flocculant (Marwichem DEC), powdered activated carbon (PAC), bentonite, activated clay and commercial synthetic inorganic clay (Macrosorb) were directly added into the activated sludge laboratory pilot plant model. Before dosage, the optimum sludge retention time and hydraulic retention time were determined as 30 days and 1.6 days, respectively. The Monod kinetic constants were determined as Y = 0.76 kg MLSS/kg COD, Kd = 0.026 l/day, K(S) = 113.3 mg/L, k = 0.42 l/day and mu(max) = 0.32 kg MLSS/kg COD day. Under these conditions the average COD removal was 94% and color removal was 36%. The addition of these materials did not change COD removal significantly. The most effective materials were found to be DEC and PAC for color removal. While the color removal efficiency for 120 mg/L DEC addition was 78%, it was 65% for 100 mg/L, 77% for 200 mg/L and 86% for 400 mg/L PAC addition. The advantage of DEC compared to PAC was the lower sludge production. Statistical analyses using multiple linear regression indicate that there is no relationship between the effluent color with the influent color and total suspended solids (TSS) for DEC and PAC addition. On the other hand, when only bentonite, activated clay and Macrosorb were added, the effluent color was primarily dependent on the influent color and the TSS concentration had little effect. When the data is examined by using Kruskal-Wallis H and Mann-Whitney U tests and it was found that there was a significant difference between the color data groups.  相似文献   

8.
Activated sludge from a domestic sewage works was enriched with nitrifying bacteria by running a laboratory fermenter on ammonia-supplemented sewage. This enriched culture was used to determine respirometrically the kinetics of microbial nitrification. It was demonstrated that the reaction fits the Michaelis-Menten model for temperatures from 10 to 35°C, having a temperature optimum at 15°C (K3 0.72 mg 1−1 NH3). Nitrification is unaffected by high dissolved oxygen concentration 38 mg 1−1 O2 at 30°C) after acclimatisation. Nitrite concentrations > 20 mg 1−1 are inhibitory to the reaction.  相似文献   

9.
The development and proliferation of antibiotic resistance in pathogenic, commensal, and environmental microorganisms is a major public health concern. The extent to which human activities contribute to the maintenance of environmental reservoirs of antibiotic resistance is poorly understood. In the current study, wastewater treatment plants (WWTPs) were investigated as possible sources of tetracycline resistance via qualitative PCR and quantitative PCR (qPCR). Various WWTPs and two freshwater lakes were surveyed for the presence of an array of 10 tetracycline resistance determinants (tet(R)): tet(A)-(E), tet(G), tet(M), tet(O), tet(Q), tet(S). All WWTP samples contained more different types of tet(R) genes, as compared to the lake water samples. Gene copy numbers of tet(G) and tet(Q) in these samples were quantified via qPCR and normalized to both the volume of original sample and to the amount of DNA extracted per sample (a proxy for bacterial abundance). Concentrations of tet(Q) were found to be highest in wastewater influent while tet(G) concentrations were highest in activated sludge. Investigation of the effects of UV disinfection on wastewater effluent showed no reduction in the number of detectable tet(R) gene types.  相似文献   

10.
Activated sludge processes are often operated under dynamic conditions, where the microbial response can include, besides of growth, several COD removal mechanisms, and particularly the storage in form of polymers. While abundant evidence of aerobic storage under dynamic conditions with synthetic substrates can be found (Majone et al., Water Sci. Technol. 39(1) (1999) 61), there is still little knowledge about COD removal mechanisms with real activated sludge and wastewater. The aim of the present paper is therefore to give a direct evidence of storage phenomena occurring when a real sludge is mixed with influent wastewater and of their influence onto OUR profiles in typical respirometric batch tests. For this purpose, respirometric batch tests were performed on the same sludge by using acetate, filtered wastewater and raw wastewater as carbon source along with determination of acetate uptake and storage polymer formation. Comparison of results obtained has shown that poly-3-hydroxybutyrate (PHB) storage gives always the main contribution to acetate removal and that in the case of wastewater PHB is also formed from other substrates. PHB formation clearly occurs during the high-rate RBCOD-phase, however for wastewater it accounts for only a fraction (18-22%) of overall RBCOD removal, so calling for other unidentified storage compounds or other non-storage phenomena. In the low-rate SBCOD phase of respirogram PHB is clearly utilised in tests with acetate as internal reserve material once the acetate is depleted. In tests with filtered and raw wastewater the PHB concentration decreases much slower, probably because more PHB is formed due to the availability of external SBCOD (soluble and not). Moreover, reported OUR in the SBCOD-phase from filtered or raw wastewater are quite higher than those reported in batch tests with acetate, so confirming a main contribution of external SBCOD. However, the respective contributions for utilisation of previously stored compounds and of external SBCOD cannot be easily separated by the comparison of tests on filtered and raw wastewater, because both substrates are simultaneously present also in tests with the filtered wastewater. As a side consequence, the chemical-physical method for evaluation of true soluble and biodegradable COD tends to overestimate the respirometry-based RBCOD, at least for the wastewater under observation. Even though modelling by ASM3 (Gujer et al., Water Sci. Technol. 39(1) (1999) 183) makes it possible to well describe the whole experimental behaviour, it requires that much more storage compounds are formed than the experimentally observed PHB. These compounds have still to be identified and quantified in order to confirm the conceptual structure of ASM3.  相似文献   

11.
以天津市静海县天宇科技园污水处理厂污水处理为例,根据其污染企业为金属加工厂,铁离子严重超标的状况,确定了活性污泥培养和驯化的污水处理方案,并进行了相关试验研究。  相似文献   

12.
13.
The response of activated sludge microfauna in terms of abundance and diversity has been analysed to evaluate both the toxic effect of ammonia nitrogen and the acclimatisation capacity of these microorganisms to its toxicity. The harmful effect of ammonia nitrogen was studied by means of two toxicological tests. The ammonia concentrations tested were: 9, 20, 30 and 50mg NH4+-N/l in the first toxicological test and 30, 40, 50 and 80 mg NH4+-N/l in the second. The results suggest that ammonia nitrogen causes a clear but reversible toxic effect on microfauna abundance when its concentrations are around three times higher than that which the microfauna is used to. Chilodonella uncinata and Acineria uncinata were the ciliates least affected by the ammonia nitrogen toxicity. Furthermore, the majority of microfauna groups analysed (gymnamoebae and ciliates) showed capability for acclimatisation to ammonia nitrogen in terms of abundance.  相似文献   

14.
Centralized wastewater treatment policy is a common challenge in Hungary. With the recent technology improvement of the Debrecen Wastewater Treatment Plant, the original activated sludge function system’s maximum load is doubled, making it able to treat the effluents of 7 settlements total. The introduced new technical constructions however required strict attention to be successfully integrated into the existing system. Retrofitting the overall processes caused disturbances affecting certain parameters in the biological treatment, thus modifying water quality of the effluent. Our experiments had aimed to control the performance of the plant after the reconstruction during test phase for more than a year period. It has been found that a slight increase of removal efficiency was achieved in the observed parameters of COD, BOD5, TP, SS, while TN remained in a moderate degree of enhancement. Retention effectiveness has begun to escalate significantly after a year of operation.  相似文献   

15.
Addition of powdered activated carbon (PAC) to the aeration basin of an activated sludge treatment plant fed with dye-works waste waters increases the purifying capacity of the plant: removal efficiency rises from 55.8 to 75.6% (COD) and from 78 to 98.5% (BOD5) and the nitrification-denitrification capacity of the system also increases.The sludge growth parameters and the kinetic constant of biological oxidation were determined on the plant with and without PAC. The addition of PAC decreased overall sludge growth rate and the auto-oxidation factor, but increased the biological removal rate of the substrate by about one order of magnitude.  相似文献   

16.
结合福州市金山污水处理厂工艺及及活性污泥培养驯化实例,分析总结ICEAS工艺启动及活性污泥培养驯化经验。  相似文献   

17.
The organic matter of wastewater was fractionated into settleable (i.e., particulate) and non-settleable (i.e., colloidal + soluble) fractions by settling followed by 0.22 micron filtration. Particulate, colloidal and soluble proportions were found to be relatively constant (45, 31 and 24% of the total COD, respectively). Transfer of soluble fraction always occurred from the wastewater to the activated sludge flocs, whereas bidirectional transfer occurred for the colloidal fraction. The transfer of soluble and colloidal matter reached a steady state after 40 min-mixing and 20 min-mixing, respectively. Desorption of a part of the colloidal organic matter pre-sorbed on the activated sludge flocs was evidenced. The biosorption capacity of activated sludge was around 40-100 mgCODg-1TSS. The biosorbable fraction of wastewater represented on average 45% of the non-settleable fraction.  相似文献   

18.
A dynamic mathematical model has been developed for a general activated sludge wastewater treatment plant. The model includes a primary settler, aeration tank, and clarifier-thickener, each of which is represented by various configurations of a general tanks-in-series model. With the aid of the model, it was possible to simulate simultaneously the diurnal response of a number of significant variables including dissolved BOD, suspended solids, dissolved volatile solids, active mass, inert mass, soluble nonbiodegradable mass, Nitrosomonas mass, Nitrobacter mass, ammonium, nitrite, nitrate and dissolved oxygen. The equations for the model as well as the results of plant simulations using the model and a sensitivity analysis are presented.  相似文献   

19.
This paper examines the sludge characteristics in a submerged membrane bioreactor (MBR) operated on a high strength wastewater from an alcohol distillery. Two membrane bioreactors, each with a 30 μm mesh filter, were investigated with and without addition of powdered activated carbon (PAC). Experiments were conducted with varying organic loading rates ranging from 3.4 to 6.9 kgCOD m−3 day−1 and the specific oxygen uptake rate (SOUR), sludge volume index (SVI), mixed liquor suspended solids (MLSS), particle size and extracellular polymeric substances (EPS) were monitored over a 180 day period. Respirometric experiments did not show enhancement in microbial activity with PAC supplementation. Addition of PAC decreased the SVI thereby perceptibly improving sludge dewaterability. The sludge particle size, which increased with time, appeared to be independent of PAC addition but was influenced by the aeration intensity. PAC also did not affect the sludge EPS concentration; however, the EPS composition, in terms of protein/carbohydrate (polysaccharide) ratio was altered resulting in a high P/C ratio. FTIR analysis of the sludge samples indicated that the functional groups associated with the sludge polysaccharides appear to be involved in its interaction with PAC.  相似文献   

20.
Due to legislative pressures, sludge production and processing in the UK will increase substantially in the future resulting in a supernatant liquid high in ammonia (500-1000 mg l-1) and "hard" COD (approximately 500 mg l-1). A small footprint reactor is required to effectively nitrify this effluent, and the aim of this work was to compare a number of immobilisation media under a variety of conditions in order to determine which media held the most promise for future development. Laboratory-scale continuously stirred tank reactors containing freely suspended and immobilised biomass were operated with a high-strength synthetic ammonia wastewater (500 mg N l-1) to determine the nitrification rates at various temperatures, and ammonia and COD loadings. COD:NH3 ratios in sludge liquors vary widely depending on the treatment processes employed, and therefore ratios of 1:1 and 2:1 were tested as being fairly typical. The freely suspended nitrifiers were washed out of the reactors at a 1 d hydraulic retention time (HRT), whereas the reactors containing adsorption particles (Linpor and Kaldnes) and PVA-encapsulated nitrifiers continued partially nitrifying down to 12 h, and oxygen addition enhanced nitrification. A decrease in temperature from 25 to 16 degrees C only caused a small (10%) decrease in nitrification in the immobilised cell reactors, demonstrating that nitrification was mass transfer rather than kinetically controlled. A reduction in nitrification occurred when glucose (500 mg l-1) was added to the feed due to the growth of a heterotrophic population. The adsorbed biomass reactors lost 35% of nitrification compared to only 7% with PVA, and it appears that the colonisation of PVA by heterotrophs is more difficult than for Linpor and Kaldnes. Respiration rates for all particles increased with time in the reactors, and nitrifiers immobilised in PVA retained approximately 40% of their viability after immobilisation. Volumetric nitrification rates were generally higher for the PVA reactor than for Linpor and Kaldnes, and were: suspended biomass reactor: 0.36; Linpor: 0.57; Kaldnes: 0.53 and PVA: 0.70 kg N m-3-reactor d-1 for a 25% reactor fill. These equate to 2.28, 4.24 and 3.97 g N m-2-media d-1 for Linpor, Kaldnes and PVA respectively, hence other reactor fill rates for Kaldnes warrant further investigation. However, the PVA particles with the highest nitrification rates under all conditions showed promise as an immobilisation medium, and are amenable to further optimisation for the nitrification of high-strength ammonia wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号