首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For optical burst-switched (OBS) networks in which TCP is implemented at a higher layer, the loss of bursts can lead to serious degradation of TCP performance. Due to the bufferless nature of OBS, random burst losses may occur, even at low traffic loads. Consequently, these random burst losses may be mistakenly interpreted by the TCP layer as congestion in the network. The TCP sender will then trigger congestion control mechanisms, thereby reducing TCP throughput unnecessarily. In this paper, we introduce a controlled retransmission scheme in which the bursts lost due to contention in the OBS network are retransmitted at the OBS layer. The OBS retransmission scheme can reduce the burst loss probability in the OBS core network. Also, the OBS retransmission scheme can reduce the probability that the TCP layer falsely detects congestion, thereby improving the TCP throughput. We develop an analytical model for evaluating the burst loss probability in an OBS network that uses a retransmission scheme, and we also analyze TCP throughput when the OBS layer implements burst retransmission. We develop a simulation model to validate the analytical results. Simulation and analytical results show that an OBS layer with controlled burst retransmission provides up to two to three orders of magnitude improvement in TCP throughput over an OBS layer without burst retransmission. This significant improvement is primarily because the TCP layer triggers fewer time-outs when the OBS retransmission scheme is used.  相似文献   

2.
This work proposes a stochastic model to characterize the transmission control protocol (TCP) over optical burst switching (OBS) networks which helps to understand the interaction between the congestion control mechanism of TCP and the characteristic bursty losses in the OBS network. We derive the steady-state throughput of a TCP NewReno source by modeling it as a Markov chain and the OBS network as an open queueing network with rejection blocking. We model all the phases in the evolution of TCP congestion window and evaluate the number of packets sent and time spent in different states of TCP. We model the mixed assembly process, burst assembler and disassembler modules, and the core network using queueing theory and compute the burst loss probability and end-to-end delay in the network. We derive expression for the throughput of a TCP source by solving the models developed for the source and the network with a set of fixed-point equations. To evaluate the impact of a burst loss on each TCP flow accurately, we define the burst as a composition of per-flow-bursts (which is a burst of packets from a single source). Analytical and simulation results validate the model and highlight the importance of accounting for individual phases in the evolution of TCP congestion window.  相似文献   

3.
A major concern in optical burst-switched (OBS) networks is contention, which occurs when more than one bursts contend for the same data channel at the same time. Due to the bufferless nature of OBS networks, these contentions randomly occur at any degree of congestion in the network. When contention occurs at any core node, the core node drops bursts according to its dropping policy. Burst loss in OBS networks significantly degrades the throughput of TCP sources in the local access networks because current TCP congestion control mechanisms perform a slow start phase mainly due to contention rather than heavy congestion. However, there has not been much study about the impact of burst loss on the performance of TCP over OBS networks. To improve TCP throughput over OBS networks, we first introduce a dropping policy with burst retransmission that retransmits the bursts dropped due to contention, at the ingress node. Then, we extend the dropping policy with burst retransmission to drop a burst that has experienced fewer retransmissions in the event of contention at a core node in order to reduce the number of events that a TCP source enters the slow start phase due to contention. In addition, we propose to limit the number of retransmissions of each burst to prevent severe congestion. For the performance evaluation of the proposed schemes, we provide an analytic throughput model of TCP over OBS networks. Through simulations as well as analytic modeling, it is shown that the proposed dropping policy with burst retransmission can improve TCP throughput over OBS networks compared with an existing dropping policy without burst retransmission.  相似文献   

4.
FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.  相似文献   

5.
Study of TCP performance over OBS networks has been an important problem of research lately and it was found that due to the congestion control mechanism of TCP and the inherent bursty losses in the Optical Burst Switching (OBS) network, the throughput of TCP connections degrade. On the other hand, High Speed TCP (HSTCP) was proposed as an alternative to the use of TCP in high bandwidth-delay product networks. HSTCP aggressively increases the congestion window used in TCP, when the available bandwidth is high and decreases the window cautiously in response to a congestion event. In this work, we make a thorough simulation study of HSTCP over OBS networks. While the earlier works in the literature used a linear chain of nodes as the network topology for the simulation, we use the popular 14-node NSFNET topology that represents an arbitrary mesh network in our study. We also study the performance of HSTCP over OBS for different bandwidths of access networks. We use two different cases for simulations where in the first HSTCP connections are routed on disjoint paths while in the second they contend for resources in the network links. These cases of simulations along with the mesh topology help us clearly distinguish between the congestion and contention losses in the OBS network and their effect on HSTCP throughput. For completeness of study, we also simulate TCP traffic over OBS networks in all these cases and compare its throughput with that of HSTCP. We observe that irrespective of the access network bandwidth and the burst loss rate in the network, HSTCP outperforms TCP in terms of the throughput and robustness against multiple burst losses up to the expected theoretical burst loss probability of 10−3.  相似文献   

6.
Random burst contention losses plague the performance of Optical Burst Switched networks. Such random losses occur even in low load network condition due to the analogous behavior of wavelength and routing algorithms. Since a burst may carry many packets from many TCP sources, its loss can trick the TCP sources to conclude/infer that the underlying (optical) network is congested. Accordingly, TCP reduces sending rate and switches over to either fast retransmission or slow start state. This reaction by TCP is uncalled-for in TCP over OBS networks as the optical network may not be congested during such random burst contention losses. Hence, these losses are to be addressed in order to improve the performance of TCP over OBS networks. Existing work in the literature achieves the above laid objective at the cost of violating the semantics of OBS and/or TCP. Several other works make delay inducing assumptions. In our work, we introduce a new layer, called Adaptation Layer, in between TCP and OBS layers. This layer uses burst retransmission to mitigate the effect of burst loss due to contention on TCP by leveraging the difference between round trip times of TCP and OBS. We achieve our objective with the added advantage of maintaining the semantics of the layers intact.  相似文献   

7.
Random contentions occur in optical burst-switched (OBS) networks because of one-way signaling and lack of optical buffers. These contentions can occur at low loads and are not necessarily an indication of congestion. The loss caused by them, however, causes TCP at the transport layer to reduce its send rate drastically, which is unnecessary and reduces overall performance. In this paper, we propose forward segment redundancy (FSR), a proactive technique to prevent data loss during random contentions in the optical core. With FSR, redundant TCP segments are appended to each burst at the edge and redundant burst segmentation is implemented in the core, so that when a contention occurs, primarily redundant data are dropped. We develop an analytical throughput model for TCP over OBS with FSR and perform extensive simulations. FSR is found to improve TCP’s performance by an order of magnitude at high loads and by over two times at lower loads.  相似文献   

8.
This paper investigates support for TCP RENO flows in an Optical Burst Switching (OBS) network. In particular we evaluate the TCP send-rate, i.e., the amount of data sent per time unit taking into account the burst assembly mechanism at the edge nodes of the OBS network and burst loss events inside the network. The analysis demonstrates an interesting phenomenon, that we call correlation benefit. This phenomenon is introduced by the aggregation mechanism and can give rise, in some conditions, to a significant increase in the TCP send-rate. These results are obtained by means of an analytical model, based on a Markovian approach, and have been validated via an intensive simulation campaign.  相似文献   

9.
In transport control protocol (TCP) over optical burst switching (OBS) networks, TCP window size and OBS parameters, including assembly period and burst dropping probability, will impact the network performance. In this paper, a parameter window data dropping probability(WDDP), is defined to analyze the impact of the assembly and the burst loss on the network performance in terms of the round trip time and the throughput. To reduce the WDDP without introducing the extra assembly delay penalty, we propose a novel TCP window based flow-oriented assembly algorithm dynamic assembly period (DAP). In the traditional OBS assembly algorithms, the packets with the same destination and class of service (CoS) are assembled into the same burst, i.e., the packets from different sources will be assembled into one burst. In that case, one burst loss will influence multiple TCP sources. In DAP, the packets from one TCP connection are assembled into bursts, which can avoid the above situation. Through comparing the two consecutive burst lengths, DAP can track the variation of TCP window dynamically and update the assembly period for the next assembly. In addition, the ingress node architecture for the flow-oriented assembly is designed. The performance of DAP is evaluated and compared with that of fixed assembly period (FAP) over a single TCP connection and multiple TCP connections. The results show that DAP performs better than FAP at almost the whole range of burst dropping probability.  相似文献   

10.
Burst assembly mechanism is one of the fundamental factors that determine the performance of an optical burst switching (OBS) network. In this paper, we investigate the influence of the number of burstifiers on TCP performance for an OBS network. The goodput of TCP flows between an ingress node and an egress node traveling through an optical network is studied as the number of assembly buffers per destination varies. First, the burst-length independent losses resulting from the contention in the core OBS network using a non-void-filling burst scheduling algorithm, e.g., Horizon, are studied. Then, burst-length dependent losses arising as a result of void-filling scheduling algorithms, e.g., LAUC-VF, are studied for two different TCP flow models: FTP-type long-lived flows and variable size short-lived flows. Simulation results show that for both types of scheduling algorithms, both types of TCP flow models, and different TCP versions (Reno, Newreno and Sack), TCP goodput increases as the number of burst assemblers per egress node is increased for an OBS network employing timer-based assembly algorithm. The improvement from one burstifier to moderate number of burst assemblers is significant (15–50% depending on the burst loss probability, per-hop processing delay, and the TCP version), but the goodput difference between moderate number of buffers and per-flow aggregation is relatively small, implying that an OBS edge switch should use moderate number of assembly buffers per destination for enhanced TCP performance without substantially increasing the hardware complexity.
Ezhan Karasan (Corresponding author)Email:
  相似文献   

11.
光突发交换(OBS)被认为是下一代光网络中的有效核心交换技术之一,设计OBS网络的最初目的之一是减小突发包丢失率.解决突发竞争的方法主要包括光缓存、波长变换、偏射路由和突发分段.提出一种改进偏射路由方案,并建立了数学模型,对改进方案的性能进行了仿真分析,结果表明改进方案能更好的提高网络整体性能.  相似文献   

12.
该文在分析光突发交换(OBS)网络对TCP性能影响的基础上,研究了单个突发所包含的属于同一TCP/ IP连接的分组数对TCP Reno吞吐量性能的影响,得到了一个吞吐量与突发丢失率、单个突发所包含分组数以及往返时延(RTT)的闭合表达式;并通过仿真验证了分析的正确性;分析和仿真结果表明,在接入链路带宽较大时,突发所包含的分组数存在一个最佳值,使TCP吞吐量达到最大。  相似文献   

13.
It is well-known that the bufferless nature of optical burst-switching (OBS) networks cause random burst loss even at low traffic loads. When TCP is used over OBS, these random losses make the TCP sender decrease its congestion window even though the network may not be congested. This results in significant TCP throughput degradation. In this paper, we propose a multi-layer loss-recovery approach with automatic retransmission request (ARQ) and Snoop for OBS networks given that TCP is used at the transport layer. We evaluate the performance of Snoop and ARQ at the lower layer over a hybrid IP-OBS network. Based on the simulation results, the proposed multi-layer hybrid ARQ + Snoop approach outperforms all other approaches even at high loss probability. We developed an analytical model for end-to-end TCP throughput and verified the model with simulation results.  相似文献   

14.
王志明  曾孝平  李娟  刘学  陈礼 《通信学报》2016,37(3):148-156
利用Gilbert分组丢失模型描述端对端突发分组丢失特性,提出了基于RFC6675的快重传和快恢复模型,推导并基于该模型建立TCP SACK吞吐量模型。数值实验和仿真实验表明,快重传和快恢复模型能准确描述基于RFC6675的快重传和快恢复过程;TCP SACK流吞吐量模型估计的准确性得到提升。  相似文献   

15.
Convergence between wireless networks is the main trend in current and future wireless communications. The distinct advantage of satellite and terrestrial network integration is the possibility to provide ubiquitous multimedia services in vehicles at any location. The key design considerations of mobile broadband satellite access technologies are given in this article. After presenting the conceptual models of a system and services, the design issues of satellite network synchronization and burst demodulation are described. The design considerations of medium access control, resource management, capacity, and buffer controls for internetworking are given. Also, the active antenna issues are provided along with a sample design.  相似文献   

16.
The article addresses the end-to-end performance of TCP in a scenario where WCDMA is used as the access link. In particular, the performance gain that can be achieved by placing a TCP split connection proxy in the WCDMA core network is examined. It is well known that performance enhancing proxies are able to improve the performance of TCP over wireless links that suffer from impairments. However, while previous work on TCP proxies for wireless systems either focused on other wireless systems, like wireless LAN or satellites, or provided a more generic framework, we address in detail the characteristics of a WCDMA access scenario supported by a TCP proxy. The characteristics of WCDMA as perceived by TCP are discussed thoroughly. We argue that the motivation for introducing a proxy is only to overcome problems stemming from a large bandwidth delay product and not to assist local transport layer error recovery at the wireless link. Based on simulations that consider both link layer protocols and TCP, the end-to-end performance for file downloads is investigated. Simulation results show that a proxy can significantly improve performance in the case of high data rates like 384 kb/s. For lower data rates, like 64 and 128 kb/s, it is sufficient to use a well configured TCP implementation.  相似文献   

17.
移动通信系统从1G到4G的演进   总被引:3,自引:0,他引:3  
第2代(2G)的数字移动通信由单纯的语音通信转移到提供语音、图像、文字等综合信息的传输,并能无线接入因特网.2G系统的传输速率难以满足人们对移动多媒体信息以及移动数据传输的需求.3G的核心网是从2G演进而来,但并不是传输TCP/IP数据包的最优结构.4G系统将是基于TCP/IP的核心网,混合OFDM和CDMA的无线接入方式,分离的接收、发射基站,基于无线ad hoc网络的结构而非蜂窝结构.  相似文献   

18.
Although the bandwidth of access networks is rapidly increasing with the latest techniques such as DSL and FTTH, the access link bandwidth remains a bottleneck, especially when users activate multiple network applications simultaneously. Furthermore, since the throughput of a standard TCP connection is dependent on various network parameters, including round‐trip time and packet loss ratio, the access link bandwidth is not shared among the network applications according to the user's demands. In this thesis, we present a new management scheme of access link resources for effective utilization of the access link bandwidth and control of the TCP connection's throughput. Our proposed scheme adjusts the total amount of the receive socket buffer assigned to TCP connections to avoid congestion at the access network, and assigns it to each TCP connection according to characteristics in consideration of QoS. The control objectives of our scheme are (1) to protect short‐lived TCP connections from the bandwidth occupation by long‐lived TCP connections, and (2) to differentiate the throughput of the long‐lived TCP connections according to the upper‐layer application's demands. One of the results obtained from the simulation experiments is that our proposed scheme can reduce the delay of short‐lived document transfer perceived by the receiver host by up to about 90%, while a high utilization of access link bandwidth is maintained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Transmission Control Protocol (TCP) performance over Optical Burst Switching (OBS) is experimentally investigated on an OBS network testbed, concluding that burst losses will lead to a significant drop in the available TCP bandwidth. Two mechanisms are introduced to improve TCP performance. One is concerning the burst assembly optimization and another is based on the novel assembly and scheduling mechanism to reduce the burst losses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号