首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ternary ordered variant of the skutterudite structure, the Co4Sn6Se6 compound, was prepared. Polycrystalline samples were prepared by a modified ceramic method. The electrical conductivity, the Seebeck coefficient and the thermal conductivity were measured over a temperature range of 300–800 K. The undoped Co4Sn6Se6 compound was of p-type electrical conductivity and had a band gap E g of approximately 0.6 eV. The influence of transition metal (Ni and Ru) doping on the thermoelectric properties was studied. While the thermal conductivity was significantly lowered both for the undoped Co4Sn6Se6 compound and for the doped compounds, as compared with the Co4Sb12 binary skutterudite, the calculated ZT values were improved only slightly.  相似文献   

2.
n-Type nanoporous Bi2Te3-based thermoelectric materials with different porosity ratios have been prepared by spark plasma sintering (SPS). The microstructure and phase morphology have been analyzed by x-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), and the thermoelectric properties of the SPS samples have been measured. Experimental results show that the nanoporous structures lying in the sheet layers and among the plate grains of the Bi2Te3 bulk material can lead to an increase in the Seebeck coefficient and a decrease in the thermal conductivity, thus leading to an enhanced figure of merit.  相似文献   

3.
The thermoelectric properties of the Mg2Ge0.3Sn0.7 solid solution doped with Ga and Li are studied. The samples with a hole concentration as high as 5 × 1020 cm–3 are obtained. The temperature dependences of the thermopower, electrical conductivity, and thermal conductivity are measured in the range from room temperature to 800 K. A higher mobility of free charge carriers is observed in the samples doped with lithium than in the samples doped with gallium. The largest thermoelectric figure of merit in the samples under study amounts to 0.42 at 700 K.  相似文献   

4.
A new preparation process combining melt spinning and hot pressing has been developed for the (Ag x SbTe x/2+1.5)15(GeTe)85 (TAGS-85) system. Compared with samples prepared by the traditional air-quenching and hot-pressing method, electrical conductivity and thermal conductivity are lowered. The thermoelectric performance of the TAGS-85 samples varied with changing Ag content and reached the highest ZT of 1.48 when x was 0.8 for the melt-spun sample, compared with the maximum ZT of 1.36 for the air-quenched sample. The Seebeck coefficient of the melt-spun TAGS-85 alloys was improved, while both the electrical conductivity and thermal conductivity were decreased. The net result of this process is to effectively enlarge the temperature span of ZT > 1, which will benefit industrial application.  相似文献   

5.
Mg2Si1−x Sn x -system solid solutions are ecofriendly semiconductors that are promising materials for thermoelectric generators in the middle temperature range. To produce a thermoelectric device, high-performance p- and n-type materials must be balanced. In this paper, p-type Mg2.00Si0.25Sn0.75 with Li and Ag double doping was prepared by the liquid–solid reaction method and hot-pressing. Effects of Li and Ag double doping on thermoelectric properties were investigated in the temperature range from room temperature to 850 K. All sintered compacts were identified as single-phase solid solutions with anti-fluorite structure. The carrier concentration increased with the double doping. The temperature dependence of resistivity of the double-doped samples was similar to that of a metal. The seebeck coefficient increased with temperature to a maximum value and then decreased in the intrinsic region. Thermal conductivity decreased linearly with increasing temperature, reaching a minimum near the intrinsic region, and then increased rapidly because of the contribution of the bipolar component. The dimensionless figure of merit reached 0.32 at 610 K for Mg2.00Si0.25Sn0.75 double-doped with Li-5000 ppm and Ag-20000 ppm.  相似文献   

6.
The results of studying the thermoelectric properties of p-type Bi0.5Sb1.5Te3 alloy samples prepared by melt spinning quenching are presented. The material after melt spinning is shaped as thin ribbons and has a quasi-amorphous structure. The thermoelectric properties (thermoelectric power and electrical resistance) and crystallization processes of as-prepared melt-spun ribbons are studied at 300–800 K for the first time. The stability range of the initial state, the crystallization-onset temperature, and the effect of thermal annealing on the thermoelectric-power factor of the alloy are determined.  相似文献   

7.
Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann–Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.  相似文献   

8.
A series of Bi2(Se0.4Te0.6)3 compounds were synthesized by a rapid route of melt spinning (MS) combined with a subsequent spark plasma sintering (SPS) process. Measurements of the Seebeck coefficient, electrical conductivity, and thermal conductivity were performed over the temperature range from 300 K to 520 K. The measurement results showed that the cooling rate of melt spinning had a significant impact on the transport properties of electrons and phonons, effectively enhancing the thermoelectric properties of the compounds. The maximum ZT value reached 0.93 at 460 K for the sample prepared with the highest cooling rate, and infrared spectrum measurement results showed that the compound with lower tellurium content, Bi2(Se0.4Te0.6)3, possesses a larger optical forbidden gap (E g) compared with the traditional n-type zone-melted material with formula Bi2(Se0.07Te0.93)3. Our work provides a new approach to develop low-tellurium-bearing Bi2Te3-based compounds with good thermoelectric performance.  相似文献   

9.
Complex Zintl phases possess low thermal conductivity and can be easily doped to modify the transport properties. Therefore, these phases have the potential to be good thermoelectric materials by simply controlling carrier concentration. Yb14MnSb11 is a Zintl phase that has shown promise as a p-type thermoelectric material for high-temperature power generation. A Sn-flux synthetic route was used to make the new phase, Yb13CaMnSb11. The high-temperature thermoelectric properties were measured on polycrystalline hot-pressed pellets and compared with Yb14MnSb11. Substitution of the lighter isovalent Ca for Yb should reduce the lattice thermal conductivity by mass disorder scattering, and a noticeable reduction is seen in thermal diffusivity measurements at high temperature. There may also be a carrier concentration effect by employing the more electropositive Ca.  相似文献   

10.
We calculated electronic structures of Ba8Al16Ge30 in some Al-Ge framework configurations without nearest-neighbor Al-Al bonds by using a first-principles method. The calculated band structures are similar in outline but different in detail. We also calculated thermoelectric properties by using the electronic structures to analyze the experimental results on a sintered Ba8Al16Ge30 sample. The calculated properties nearly agree with the experimental results; however, the calculated temperature dependences of electrical conductivity are slightly different from one another, because of differences in electronic structure. In this paper, we discuss the temperature dependence from the viewpoints of nonparabolic band effects.  相似文献   

11.
Because of its complex structure, Zn4Sb3 exhibits relatively low thermal conductivity. This, in combination with large values of the Seebeck coefficient and moderate to high electrical conductivity, makes the material especially interesting for thermoelectric application in temperatures up to 400°C. The phase purity and thermal stability of Zn4Sb3 are major issues for its thermoelectric performance and are strongly dependent on the synthesis method, atmosphere, density, and grain size. Therefore, Zn4Sb3 was prepared by both zone melting and quenching in this study, and pressed samples from crushed powders of three different grain sizes were compared. The effect of thermal cycling was studied, along with repeated structural analysis and Seebeck mapping. It was found that zone melting leads to improved thermal stability regarding decomposition via Zn loss, which finally may result in the formation of ZnSb. Larger grain size seems to reduce the degradation, because of lower concentration of grain boundaries, thus hindering diffusion inside the material.  相似文献   

12.
In this work, Te-doped and S-filled S x Co4Sb11.2Te0.8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4) skutterudite compounds have been prepared using solid state reaction and spark plasma sintering. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300–850 K, and the influences of S-addition on the thermoelectric properties of S x Co4Sb11.2Te0.8 skutterudites are systematically investigated. The results indicate that the addition of sulfur and tellurium is effective in reducing lattice thermal conductivity due to the point-defect scattering caused by tellurium substitutions and the cluster vibration brought by S-filling. The solubility of tellurium in skutterudites is enhanced with sulfur addition via charge compensation. The thermal conductivity decreases with increasing sulfur content. The highest figure of merit, ZT = 1.5, was obtained at 850 K for S0.3Co4Sb11.2Te0.8 sample, because of the low lattice thermal conductivity.  相似文献   

13.
The results of studying the galvanomagnetic and thermoelectric properties of thin block Bi92Sb8 and Bi85Sb15 films on mica and polyimide substrates are presented. The method used for measuring the thermoelectric power allowed us to study the temperature dependence the thermoelectric power, without introducing additional deformations into the substrate–film system. A significant difference in the temperature dependences of the galvanomagnetic and thermoelectric properties of films on mica and polyimide is found. The free charge-carrier concentrations and mobilities in the films on mica and polyimide and levels of the chemical potential for electrons and holes are calculated within the two-band approximation. The difference in the charge-carrier parameters for films on mica and polyimide is associated with strains in the film–substrate system.  相似文献   

14.
Based on data on the Hall coefficient, it is shown that the existence of potential barriers in the region of impurity conductivity of highly compensated Hg3In2Te6 crystals is possible. The role of barriers in the anomalous behavior of transport phenomena is discussed qualitatively. Extremely large values of the thermoelectric power are related to the combination of thermoelectric powers of contact potentials for regions with different concentrations of electrons.  相似文献   

15.
A fine measurement system for measuring thermal conductivity was constructed. An accuracy of 1% was determined for the reference quartz with a value of 1.411 W/m K. Bi0.5Sb1.5Te3 samples were prepared by mechanical alloying followed by hot-pressing. Grain sizes were varied in the range from 1 μm to 10 μm by controlling the sintering temperature in the temperature range from 623 K to 773 K. The thermal conductivity was 0.89 W/m K for the sample sintered at 623 K, while a grain size of 1.75 μm was measured by optical microscopy and scanning electron microscopy. The thermal conductivity increased on the sample sintered at 673 K because of grain growth and decreased on those sintered at the temperatures from 673 K to 773 K because the increase of pore size caused to decrease thermal conductivity. The increase of thermal conductivity for the samples sintered at temperatures above 773 K was affected by the increase of carrier concentration.  相似文献   

16.
Ag-Sb-Te-Ge-based alloys have received great attention in recent years. In the present work we prepared the pseudobinary alloy (Ag0.365Sb0.558Te)0.975 (GeTe)0.025 using spark plasma sintering and evaluated its thermoelectric (TE) properties over the temperature range from 318 K to 551 K. Rietveld analysis revealed that about 1.3 at.% Ge atoms occupy the Sb sites and that the alloy exhibits the same crystal structure as AgSbTe2. By using back-scattered electron imaging, we observed two instead of one phase in the sample. The small white AgSbTe2 chunks embedded in the matrix can substantially scatter phonons. Compared with the transport properties of Ag0.365Sb0.558Te, we obtained a slightly increased Seebeck coefficient and reduced thermal conductivity without sacrificing electrical conductivity. The highest TE figure of merit, ZT, was 0.69 at 551 K, whereas that of the ternary alloy Ag0.365Sb0.558Te was 0.61 at the corresponding temperature, suggesting that (Ag0.365Sb0.558Te)0.975(GeTe)0.025 has the potential to improve TE performance with optimization of its chemical composition.  相似文献   

17.
Filled skutterudite thermoelectric (TE) materials have been extensively studied to search for better TE materials in the past decade. However, there is no detailed investigation about the thermal stability of filled skutterudite TE materials. The evolution of microstructure and TE properties of nanostructured skutterudite materials fabricated with Ba0.3In0.2Co3.95Ni0.05Sb12/SiO2 core–shell composite particles with 3 nm thickness shell was investigated during periodic thermal cycling from room temperature to 723 K in this work. Scanning electronic microscopy and electron probe microscopy analysis were used to investigate the microstructure and chemical composition of the nanostructured skutterudite materials. TE properties of the nanostructured skutterudite materials were measured after every 200 cycles of quenching in the temperature range from 300 K to 800 K. The results show that the microstructure and composition of Ba0.3In0.2Co3.95Ni0.05Sb12/SiO2 nanostructured skutterudite materials were more stable than those of single-phase Ba0.3In0.2Co3.95Ni0.05Sb12 bulk materials. The evolution of TE properties indicates that the electrical and thermal conductivity decrease along with an increase in the Seebeck coefficient with increasing quenching up to 2000 cycles. As a result, the dimensionless TE figure of merit (ZT) of the nanostructured skutterudite materials remains almost constant. It can be concluded that these nanostructured skutterudite materials have good thermal stability and are suitable for use in solar power generation systems.  相似文献   

18.
Field-activated pressure-assisted sintering (FAPAS) was applied to sinter Bi1.2Sb4.8Te9 thermoelectric materials under different conditions, including no-current sintering (NCS), low-density current sintering (LCS), and high-density current sintering (HCS). The effect of the current density on the final thermoelectric performance of the products was investigated. Applying a higher-density electric current and shorter dwell time can improve the thermoelectric performance of the sample by increasing its electric conductivity and decreasing its thermal conductivity. The maximum figure of merit ZT values of the NCS, LCS, and HCS samples were 0.46, 0.48, and 0.57, respectively. Therefore, applying a high-density electric current in the sintering process may be an effective way to obtain Bi1.2Sb4.8Te9 thermoelectric material with high ZT value.  相似文献   

19.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

20.
Single-phase polycrystalline La x Sr1−x TiO3 (x = 0, 0.04, 0.06, 0.08, and 0.12) ceramics were prepared by the conventional solid-state reaction method using high-activity hydroxides as the raw materials. The electrical conductivity of all the samples increased with increasing x value and decreased with measurement temperature, while the thermal conductivity decreased with increasing x value and measurement temperature. The La0.12Sr0.88TiO3 sample showed the lowest thermal conductivity of 2.45 W m−1 K−1 at 873 K and the largest ZT of 0.28 at 773 K. The present work revealed that hydroxides with high activity as raw materials are beneficial to improve the thermoelectric properties, especially to decrease the thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号