首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The thermoelectric properties of n-type Bi2Te2.4Se0.6 solid solution prepared by the vacuum hot pressing of powder mixtures with different particle sizes are investigated. The powders were prepared by the mechanical grinding of ingots and melt spinning. The microstructure and fracture pattern of a sample cleavage surface are analyzed using scanning electron microscopy and optical microscopy. The thermoelectric characteristics (the Seebeck coefficient, electrical conductivity, and thermal conductivity) are measured at room temperature and in the temperature range of 100–700 K.  相似文献   

2.
A series of Bi2(Se0.4Te0.6)3 compounds were synthesized by a rapid route of melt spinning (MS) combined with a subsequent spark plasma sintering (SPS) process. Measurements of the Seebeck coefficient, electrical conductivity, and thermal conductivity were performed over the temperature range from 300 K to 520 K. The measurement results showed that the cooling rate of melt spinning had a significant impact on the transport properties of electrons and phonons, effectively enhancing the thermoelectric properties of the compounds. The maximum ZT value reached 0.93 at 460 K for the sample prepared with the highest cooling rate, and infrared spectrum measurement results showed that the compound with lower tellurium content, Bi2(Se0.4Te0.6)3, possesses a larger optical forbidden gap (E g) compared with the traditional n-type zone-melted material with formula Bi2(Se0.07Te0.93)3. Our work provides a new approach to develop low-tellurium-bearing Bi2Te3-based compounds with good thermoelectric performance.  相似文献   

3.
In this study, the melt spinning method was used to develop Fe80.5Si7.5B6Nb5Cu amorphous ribbons in the first step. Then, the Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline core with a compact microstructure was obtained by multiple processes. The main properties of the magnetic powder core, such as micromorphology, thermal behavior, permeability, power loss and quality factor, have been analyzed. The obtained results show that an Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline duplex core has high permeability (54.8–57), is relatively stable at different frequencies and magnetic fields, and the maximum power loss is only 313 W/kg; furthermore, it has a good quality factor.  相似文献   

4.
A new preparation process combining melt spinning and hot pressing has been developed for the (Ag x SbTe x/2+1.5)15(GeTe)85 (TAGS-85) system. Compared with samples prepared by the traditional air-quenching and hot-pressing method, electrical conductivity and thermal conductivity are lowered. The thermoelectric performance of the TAGS-85 samples varied with changing Ag content and reached the highest ZT of 1.48 when x was 0.8 for the melt-spun sample, compared with the maximum ZT of 1.36 for the air-quenched sample. The Seebeck coefficient of the melt-spun TAGS-85 alloys was improved, while both the electrical conductivity and thermal conductivity were decreased. The net result of this process is to effectively enlarge the temperature span of ZT > 1, which will benefit industrial application.  相似文献   

5.
The results of studying the galvanomagnetic and thermoelectric properties of thin block Bi92Sb8 and Bi85Sb15 films on mica and polyimide substrates are presented. The method used for measuring the thermoelectric power allowed us to study the temperature dependence the thermoelectric power, without introducing additional deformations into the substrate–film system. A significant difference in the temperature dependences of the galvanomagnetic and thermoelectric properties of films on mica and polyimide is found. The free charge-carrier concentrations and mobilities in the films on mica and polyimide and levels of the chemical potential for electrons and holes are calculated within the two-band approximation. The difference in the charge-carrier parameters for films on mica and polyimide is associated with strains in the film–substrate system.  相似文献   

6.
Thermoelectric compounds based on doped bismuth telluride and its alloys have recently attracted increasing interest. Due to their structural features they show increased values of the thermoelectric figure of merit (ZT). A promising approach to improve the thermoelectric properties is to manufacture nanocomposite materials exhibiting lower thermal conductivities and higher ZT. The ZT value of compounds can be shifted reasonably to higher values (>1) by alloying with IV-Te materials and adequate preparation methods to form stable nanocomposites. The influence of PbTe and Sn on the thermoelectric properties is studied as a function of concentration and preparation methods. Melt spinning and spark plasma sintering were applied to form nanocomposite materials that were mechanically and thermodynamically stable for applications in thermoelectric devices. The structural properties are discussed based on analysis by transmission electron microscopy and x-ray diffraction.  相似文献   

7.
Using the method of planar crystallization from the melt with deviations from the stoichiometric composition, p-CuIn3Se5 single crystals are grown. The electrical properties of the homogeneous crystals are studied. It is found that the resistivity of the p-CuIn3Se5 crystals depends on the excess Se content in the melt. It is established that the voltaic photosensitivity of the In/CuIn3Se5 structures is enhanced with an increasing excess of Se content in the melt. The energy spectrum and the character of interband transitions in the CuIn3Se5 crystals are discussed. It is concluded that the CuIn3Se5 ternary compound can be used in high efficiency photoelectric converters of solar radiation.  相似文献   

8.
We report the thermoelectric properties of spark plasma-sintered In4Se3-In4Te3 materials. For comparison, pure In4Se3 and In4Se3 (80 wt.%)/In4Te3 (20 wt.%) mixture samples were prepared. In4Se3 and In4Te3 powders were synthesized by a conventional melting process in evacuated quartz ampoules, and a spark plasma method was used for the sintering of the pure In4Se3 and mixture samples. Thermoelectric and structural characterizations were carried out, and the mixing effect of In4Se3 and In4Te3 on the thermoelectric properties was investigated.  相似文献   

9.
The higher boride compound YB22C2N has been reported as a promising n-type high-temperature thermoelectric material and possible counterpart to boron carbide. To investigate the influence of transition-metal additives on the thermoelectric properties of YB22C2N, a series of Rh, Co, Cu, and Ni samples were prepared. The resistivity and Seebeck coefficient of the samples were measured in the temperature range of 323 K to 1073 K. Samples with Rh and Co additives showed a considerable reduction of resistivity in comparison with pure YB22C2N and maintained their semiconducting properties at high temperatures. A sample with Co, obtained using long-term ball milling, showed the highest absolute value of Seebeck coefficient among all previously studied YB22C2N-based materials. Analyses of the influence of transition-metal additives and processing methods such as ball milling on the thermoelectric properties of YB22C2N are presented.  相似文献   

10.
Bulk thermoelectric nanocomposite materials have great potential to exhibit higher ZT due to effects arising from their nanostructure. Herein, we report low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites containing FeSb2 nanoinclusions. These nanocomposites can be easily synthesized by melting and rapid water quenching. The nanoscale FeSb2 precipitates are well dispersed in the skutterudite matrix and reduce the lattice thermal conductivity due to additional phonon scattering from nanoscopic interfaces. Moreover, the nanocomposite samples also exhibit enhanced Seebeck coefficients relative to regular iron-substituted skutterudite samples. As a result, our best nanocomposite sample boasts a ZT = 0.041 at 300 K, which is nearly three times as large as that for Co0.9Fe0.1Sb3 previously reported.  相似文献   

11.
The thermoelectric properties of the Mg2Ge0.3Sn0.7 solid solution doped with Ga and Li are studied. The samples with a hole concentration as high as 5 × 1020 cm–3 are obtained. The temperature dependences of the thermopower, electrical conductivity, and thermal conductivity are measured in the range from room temperature to 800 K. A higher mobility of free charge carriers is observed in the samples doped with lithium than in the samples doped with gallium. The largest thermoelectric figure of merit in the samples under study amounts to 0.42 at 700 K.  相似文献   

12.
We calculated electronic structures of Ba8Al16Ge30 in some Al-Ge framework configurations without nearest-neighbor Al-Al bonds by using a first-principles method. The calculated band structures are similar in outline but different in detail. We also calculated thermoelectric properties by using the electronic structures to analyze the experimental results on a sintered Ba8Al16Ge30 sample. The calculated properties nearly agree with the experimental results; however, the calculated temperature dependences of electrical conductivity are slightly different from one another, because of differences in electronic structure. In this paper, we discuss the temperature dependence from the viewpoints of nonparabolic band effects.  相似文献   

13.
Complex Zintl phases possess low thermal conductivity and can be easily doped to modify the transport properties. Therefore, these phases have the potential to be good thermoelectric materials by simply controlling carrier concentration. Yb14MnSb11 is a Zintl phase that has shown promise as a p-type thermoelectric material for high-temperature power generation. A Sn-flux synthetic route was used to make the new phase, Yb13CaMnSb11. The high-temperature thermoelectric properties were measured on polycrystalline hot-pressed pellets and compared with Yb14MnSb11. Substitution of the lighter isovalent Ca for Yb should reduce the lattice thermal conductivity by mass disorder scattering, and a noticeable reduction is seen in thermal diffusivity measurements at high temperature. There may also be a carrier concentration effect by employing the more electropositive Ca.  相似文献   

14.
The effect of synthesis conditions on the structure and thermoelectric properties of zinc-antimonide- based materials is investigated. The effects of Zn excess, the modes of spark plasma sintering, and In doping on the phase composition and the thermal stability of the properties of the obtained material are considered. The material is prepared by the method of the direct alloying of components and spark plasma sintering. It is shown that, at certain modes of spark plasma sintering, the introduction of an excess amount of Zn and In doping make it possible to obtain β-Zn4Sb3 with the thermoelectric efficiency ZT ≈ 1.47 at a temperature of 720 K, which shows the stability of characteristics under the performed tests.  相似文献   

15.
Based on data on the Hall coefficient, it is shown that the existence of potential barriers in the region of impurity conductivity of highly compensated Hg3In2Te6 crystals is possible. The role of barriers in the anomalous behavior of transport phenomena is discussed qualitatively. Extremely large values of the thermoelectric power are related to the combination of thermoelectric powers of contact potentials for regions with different concentrations of electrons.  相似文献   

16.
Zintl phases are currently receiving great attention for their thermoelectric potential typified by the discovery of a high ZT value in Yb14MnSb11-based compounds. Herein, we report on the crystallographic characterization via neutron and x-ray diffraction experiments, and on the thermoelectric properties measured in the 300 K to 1000 K temperature range, of Mo3Sb7 and its isostructural compounds Mo3−x Ru x Sb7. Even though Mo3Sb7 displays rather high ZT values given its metallic character, the partial substitution of Mo by Ru substantially improves its thermoelectric properties, resulting in a ZT value of ∼0.45 at 1000 K for x = 0.8.  相似文献   

17.
The output power and conversion efficiency of thermoelectric modules (TEMs) are mainly determined by their material properties, i.e., Seebeck coefficient, electrical resistivity, and thermal conductivity. In practical applications, due to the influence of the harsh environment, the mechanical properties of TEMs should also be considered. Using the finite-element analysis (FEA) model in ANSYS software, we present the thermal stress distribution of a TEM based on the anisotropic mechanical properties and thermoelectric properties of hot-pressed materials. By analyzing the possibilities of damage along the cleavage plane of Bi2Te3-based thermoelectric materials and by optimizing the structure parameters, a TEM with better mechanical performance is obtained. Thus, a direction for improving the thermal stress resistance of TEMs is presented.  相似文献   

18.
Mo3Sb7, crystallizing in the Ir3Ge7 type structure, has poor thermoelectric (TE) properties due to its metallic behavior. However, by a partial Sb-Te exchange, it becomes semiconducting without noticeable structure changes and so achieves a significant enhancement in the thermopower with the composition of Mo3Sb5Te2. Meanwhile, large cubic voids in the Mo3Sb5Te2 crystal structure provide the possibility of filling the voids with small cations to decrease the thermal conductivity by the so-called rattling effect. As part of the effort to verify this idea, we report herein the growth as well as measurements of the thermal and electrical transport properties of Mo3Sb5.4Te1.6 and Ni0.06Mo3Sb5.4Te1.6.  相似文献   

19.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

20.
Mg2Si1−x Sn x -system solid solutions are ecofriendly semiconductors that are promising materials for thermoelectric generators in the middle temperature range. To produce a thermoelectric device, high-performance p- and n-type materials must be balanced. In this paper, p-type Mg2.00Si0.25Sn0.75 with Li and Ag double doping was prepared by the liquid–solid reaction method and hot-pressing. Effects of Li and Ag double doping on thermoelectric properties were investigated in the temperature range from room temperature to 850 K. All sintered compacts were identified as single-phase solid solutions with anti-fluorite structure. The carrier concentration increased with the double doping. The temperature dependence of resistivity of the double-doped samples was similar to that of a metal. The seebeck coefficient increased with temperature to a maximum value and then decreased in the intrinsic region. Thermal conductivity decreased linearly with increasing temperature, reaching a minimum near the intrinsic region, and then increased rapidly because of the contribution of the bipolar component. The dimensionless figure of merit reached 0.32 at 610 K for Mg2.00Si0.25Sn0.75 double-doped with Li-5000 ppm and Ag-20000 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号