首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycrystalline alloys Fe2TiSn1–x Si x (0 ≤ x ≤ 1) theoretically predicted as highly efficient thermoelectric materials are experimentally studied. Structural studies show that the partial substitution of Sn with Si results in the formation of a multiphase state in samples with x > 0. Impurity phases in general lead to a significant decrease in the Seebeck coefficient and an increase in the thermal conductivity of Fe2TiSn1–x Si x samples, which does not allow consideration of these materials as promising thermoelectrics.  相似文献   

2.
The values of the thermoelectric power, layer resistivity and thermal conductivity of a Mn x Si1–x nanoscale layer and Mn x Si1–x/Si superlattice on silicon depending on the growth temperature in the range T = 300–600 K are found experimentally. The contribution of the nanoscale film and substrate to the thermoelectric effect is discussed. The thermoelectric figure of merit of a single manganese-ssilicide layer, superlattice, and layer/substrate system is estimated. The largest figure of merit ZT = 0.59 ± 0.06 is found for Mn0.2Si0.8 at T = 600 K.  相似文献   

3.
Functionally graded thermoelectric materials (FGTMs) have been prepared by sedimentation of atoms under a strong gravitational field. Starting samples of Bi x Sb1?x alloys with different composition x were synthesized by melting of metals and subsequent annealing of quenched samples. The thermoelectric properties (Seebeck coefficient, electrical conductivity) of the starting materials were characterized over the temperature range from 300 K to 525 K. Strong gravity experiments were performed in a unique ultracentrifuge apparatus under acceleration of over 0.5 × 106 G at temperatures of 538 K and 623 K. Changes of the microstructure and chemical composition were analyzed using scanning electron microscopy with energy-dispersive x-ray spectroscopy analysis. The distribution of the Seebeck coefficient of the Bi-Sb alloys was characterized by scanning thermoelectric microprobe. As a result of sedimentation, large changes in chemical composition (x = 0.45 to 1) were obtained. It was found that the changes in chemical composition were correlated with alterations of the Seebeck coefficient. The obtained experimental data allowed the development of a semiempirical model for the selection of optimal processing parameters for preparation of Bi-Sb alloys with required thermoelectric properties.  相似文献   

4.
Processes of chemical vapor deposition (CVD) of metal and dielectric (high-k and low-k) films with the help of unconventional initial reagents (volatile complex and organoelement compounds) were developed. Complex investigation of the chemical and phase composition and structure of (HfO2)1 ? x (Me 2O3) x double oxides (where Me = Al, Sc), and silicon carbonitrides and oxycarbonitrides was carried out. It was shown that the resulting materials enjoy a number of unique functional properties, which makes them promising for application in micro-, nano-, and optoelectronic devices.  相似文献   

5.
Deep-level transient spectroscopy is used to study the formation of complexes that consist of a radiation defect and a residual impurity atom in silicon. It is established that heat treatment of the diffused Si p+-n junctions irradiated with fast electrons lead to the activation of a residual Fe impurity and the formation of the FeVO (E0.36 trap) and FeV2 (H0.18 trap) complexes. The formation of these traps is accompanied by the early (100–175°C) stage of annealing of the main vacancy-related radiation defects: the A centers (VO) and divacancies (V2). The observed complexes are electrically active and introduce new electron (E0.36: E t e =E c -0.365 eV, σ n =6.8×10?15 cm2) and hole (H0.18: E t h =E v +0.184 eV, σ p =3.0×10?15 cm2) levels into the silicon band gap and have a high thermal stability. It is believed that the complex FeVO corresponds to the previously observed and unidentified defects that have an ionization energy of E t e =E c ?(0.34–0.37) eV and appear as a result of heat treatment of irradiated diffused Si p+-n junctions.  相似文献   

6.
The technological conditions for growing single crystals of Tl1–x In1–x Sn x Se2 (x = 0.1–0.25) alloys are developed. The spectral distribution of the photoconductivity of the grown crystals at T = 300 K and thermally stimulated conductivity are studied. The effect of In3+cation substitution with Sn4+ in Tl1–x In1–x Sn x Se2 (x = 0.1–0.25) alloys on their photoelectric properties is shown.  相似文献   

7.
The temperature dependences of the conductivity and thermoelectric power for a series of samples W1–x Nb x S2, W1–x Nb x Se2, WS2–y Se y , W1–x Nb x S2–y Se y are studied at low temperatures. It is found that the cation substitution of W atoms with Nb leads to an increase in the conductivity and a decrease in the thermoelectric power. The anion substitution of S with Se atoms results in a simultaneous increase in the conductivity and thermoelectric power. The highest power factor among the samples studied is inherent to W0.8Nb0.2Se2.  相似文献   

8.
Surface generation of minority charge carriers in silicon metal-oxide-semiconductor (MOS) structures is efficient only at the initial recombinationless stage. Quasi-equilibrium between surface generation centers and the minority-carrier band is established in a time t ~ 10?5 s. In the absence of other carrier generation channels, an equilibrium inversion state at 300 K would need t = t > 103 years to become established. In fact, the time t ∞ is much shorter, due to excess-carrier generation via centers located at the SiO2/Si interface over the gate periphery. This edge-related generation can easily be simulated in an MOS structure with a single gate insulated from Si by oxide layers of various thicknesses. At gate depleting voltages V g , the role of the periphery is played by a shallow potential well under a thicker oxide, and the current-generation kinetics becomes unconventional: two discrete steps are observed in the dependences I(t), and the duration and height of these steps depend on V g . An analysis of the I(t) curves allows determination of the electric characteristics of the Si surface in the states of initial depletion (t = 0) and equilibrium inversion (t = t), as well as the parameters of surface lag centers, including their energy and spatial distributions. The functionally specialized planar inhomogeneity of a gate insulator is a promising basis for dynamic sensors with integrating and threshold properties.  相似文献   

9.
Admittance spectroscopy is used to study hole states in Si0.7–y Ge0.3Sn y /Si quantum wells in the tin content range y = 0.04–0.1. It is found that the hole binding energy increases with tin content. The hole size-quantization energies in structures containing a pseudomorphic Si0.7–y Ge0.3Sn y layer in the Si matrix are determined using the 6-band kp method. The valence-band offset at the Si0.7–y Ge0.3Sn y heterointerface is determined by combining the numerical calculation results and experimental data. It is found that the dependence of the experimental values of the valence-band offsets between pseudomorphic Si0.7–y Ge0.3Sn y layers and Si on the tin content is described by the expression ΔE V exp = (0.21 ± 0.01) + (3.35 ± 7.8 × 10–4)y eV.  相似文献   

10.
The transmittance spectra of single-crystal Cu2ZnSnS4 and Cu2ZnSnSe4 compounds and Cu2ZnSn(S x Se1–x )4 alloys grown by chemical vapor-transport reactions are studied in the region of the fundamental absorption edge. From the experimental spectra, the band gap of the compounds and their alloys is determined. The dependences of the band gap on the composition parameter x of the alloy are constructed. It is established that the band gap nonlinearly varies with x and can be described as a quadratic dependence.  相似文献   

11.
The results of measurements of frequency dependences of conductivity and electron spin resonance (ESR) of the Cd1 ? x FexTe alloys (0.01 ≤ x ≤ 0.05) at room temperature are presented. It is found that, in the composition range 0.003 ≤ x ≤ 0.05, a new asymmetric ESR absorption line with g ≈ 3.9 emerges, and its hysteresis manifests itself while the samples are magnetized. The line with g ≈ 3.9 is attributed to the charge state 3+ of the Fe atoms, which occurs in tetrahedra with three Fe atoms.  相似文献   

12.
Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K?1 m?1 along the one-dimensional direction (b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = ?530 μV K?1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.  相似文献   

13.
The temperature dependences of the electrical conductivity σ(T), the Hall coefficient R(T), and the thermoelectric coefficient α(T) are investigated in TlIn1–xYbxTe2 (0 < x < 0.10) solid solutions at 80–1000К. From the kinetic parameters, the effective masses of electrons and holes are determined. The obtained experimental data on σ(T) and α(T) are interpreted within the context of a model with one and two types of charge carriers. It is established that, since x = 0.05, the TlIn1–xYbxTe2 solid solutions belong to the class of narrow-gap semiconductors that have high matrix elements of interaction.  相似文献   

14.
Bi1?x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ~200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1?x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal–semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1?x Sb x thin films with thicknesses in the range d = 250–300 nm prepared by thermal evaporation of Bi1?x Sb x crystals (x = 0–0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1?x Sb x crystal composition are reproduced in thin films.  相似文献   

15.
The Hall factor and thermoelectric properties of an n-Bi2Te2.7Se0.3 solid solution with the roomtemperature Seebeck coefficient |S| = 212 μV/K have been studied in the temperature range 77–350 K. The observed temperature dependences demonstrate a number of specific features, which were earlier found in samples with a lower electron density N. The effect of these specific features on the thermoelectric figure of merit Z appears to be more favorable for the sample under study: this sample is most efficient in the temperature range 120–340 K, and the average value of ZT is 0.71. It is found that a rise in the density N enhances the factor responsible for the effective mass decreasing as the temperature increases. This effect appears when the analysis is carried out in terms of a single-band parabolic model with N = const(T). This finding suggests that the most probable reason for the unusual behavior of these properties is the complex structure of the electron spectrum. Temperature dependences obtained from calculations of the transport coefficients show good agreement with the experimental data for two samples of the mentioned composition with different electron densities. The calculations have been performed in terms of a two-band model and an acoustic scattering mechanism and take into account the anisotropy and nonparabolicity of the light-electron spectrum.  相似文献   

16.
In n-Si-based metal-oxide-semiconductor structures with a boron-doped surface layer, at the temperature T = 77 K, mesoscopic fluctuations in nondiagonal resistance-tensor component R xy are discovered under hole depletion of the Si: B layer caused by the field effect. A sharp increase in the fluctuation in R xy is discovered during the study of a shift from the 3D weakly perturbed hole transport to the quasi-2D percolation conduction on the back boundary of the Si: B layer. The fluctuations in R xy are due to the restructuring that occurs in the percolation cluster when the hole shielding of the fluctuation potential of ionized acceptors is weakened. Correlation length L c of the percolation cluster, which determines the boundary of the transition from the macroscopic to the mesoscopic system, has been estimated experimentally. Good agreement between the estimates and the computational results is observed for L c ranging from ≈ 10 nm to ≈ 1 μm.  相似文献   

17.
Monolithic dual-junction GaInP/GaAs solar cells grown by the MOCVD method were studied. The conditions of the growth of ternary Ga x In1?x P and Al x In1?x P alloys lattice-matched to GaAs are optimized. Technology for fabrication of a tunneling diode with a high peak current density of 207 A/cm2 on the basis of heavily doped n ++-GaAs:Si and p ++-AlGaAs:C layers is developed. Cascade GaInP/GaAs solar cells obtained as a result of relevant studies featuring a good efficiency of the solar-energy conversion both for space and terrestrial applications. The maximum value of the GaInP/GaAs solar-cell efficiency was 30.03% (at AM1.5D, 40 suns).  相似文献   

18.
The electrical resistivity and thermopower of cobalt monosilicide (CoSi) and dilute alloys of CoSi with iron at temperatures from 2 to 370 K are experimentally investigated. CoSi is a semimetal and considered to be a promising thermoelectric material. It crystallizes into the cubic structure without an inversion center. This feature suggests the existence of topologically nontrivial electronic states and makes CoSi a candidate for the Weyl semimetal class. The main goal of the study is to find experimental confirmation of this assignment. It is shown that the experimental temperature dependences of the electrical resistivity and thermopower of CoSi and Co1–xFexSi (x = 0.04) at low temperatures cannot be interpreted within the standard theory of conductivity in metals and may be related to topological features of the electronic structure of this compound.  相似文献   

19.
F. F. Aliev 《Semiconductors》2003,37(9):1057-1060
The conductivity σ, Hall coefficient R, and thermoelectric power α0 of p-Ag2Te were studied in the temperature range of 300–550 K. Inconsistency between the signs of R and α0 was observed at 420–550 K. These results are interpreted within the two-phase model with spherical constant energy surfaces. It is established that the inconsistency between the R and α0 signs is due to the emergence of the scattering mechanisms with the parameters r0ac, r00, and r0d an increase of about 50% in the ratio of the effective electron and hole masses as a result of the transition α → β.  相似文献   

20.
The RE2Fe17 (RE = Ce, Pr, Nd, Sm) and LaxPr2?xFe17 (x = 0.0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by arc smelting and high-energy ball milling methods. The phase structure, morphology, magnetic properties and electromagnetic parameters of the powders were characterized by x-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, respectively. The results reveal that the lattice parameters a and c and unit-cell volume V of the LaxPr2?xFe17 alloys increase linearly upon the La content. The minimum absorption peak frequency shifts towards a lower-frequency region upon the La content. And the minimum reflection loss and saturation magnetization of the LaxPr2?xFe17 alloys decrease upon the La content, while the minimum reflection loss of Pr2Fe17 and La0.4Pr1.6Fe17 alloy of the 2.0 mm coating thickness reaches about ?13.65 dB and ?7.15 dB at 5.92 GHz and 3.6 GHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号