首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cadmium selenide (CdSe) nanocrystalline thin films were prepared by chemical bath deposition (CBD) using ammonia and triethanolamine (TEA) as complexing agents, cadmium chloride and sodium selenosulphate as the sources of Cd2+ and Se2? ions, respectively. The structural and optical properties of CdSe nanocrystalline thin films were investigated as a function of the sodium selenosulphate concentrations or ammonia concentrations in precursors using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) and UV–visible spectrophotometer measurements. The results reveal that the CdSe thin films are in the pure cubic phase, which composed of a large number of uniform spherical particles. Each spherical particle contains many nanocrystals 3–10 nm in crystallite size. An increase in both the average diameter of the spherical particles and the crystallite size of the nanocrystals occurs with an increase in ammonia concentrations. The Se/Cd atom ratios of CdSe thin films firstly increase and then decrease with an increase in ammonia concentration or sodium selenosulphate concentration. The optical band gap of CdSe thin films decrease with an increase in ammonia concentrations. The kinetics and reaction mechanism of the CdSe nanocrystalline thin films during deposition are discussed.  相似文献   

2.
CdSe and Bi (1%, 2%, 3%) doped CdSe thin films were deposited on the glass substrates using thermal evaporation technique. Effect of Bi doping on the structural, optical, electrical and photo response properties of CdSe thin films were investigated. The X-ray diffraction studies reveals that undoped and Bi doped CdSe films are polycrystalline in nature with hexagonal crystal structure along (002) direction. No significant changes are observed in the lattice parameters or the grain size indicating minimum lattice distortion. The optical band gap of undoped CdSe film was estimated to be 1.67 eV. Replacement of cadmium by bismuth results in an increase in the electrical conductivity of doped films. Doping with bismuth is found to improve the photo sensitivity of CdSe thin films.  相似文献   

3.
Thin films of cadmium selenide (CdSe) and CdxSe100−x (x=54, 34) have been deposited by vacuum evaporation onto ultraclean glass substrates at room temperature from as-prepared powders. Fabricated samples were characterized using X-ray diffraction (XRD), UV–vis and Fourier transform infrared (FTIR) spectroscopy. XRD indicated the formation of polycrystalline CdxSe100−x thin films polycrystalline in nature with the preferred orientation along the (002) plane. The crystallite sizes of thin films calculated by the Scherer formula were found to be in the range of 29–82 nm. The crystallinity of thin films degraded on increasing the Cd concentration in the Cd–Se system. The band gaps of thin films were obtained from their optical absorption spectra, which were found in the range of 1.69–2.20 eV. The band gap of the Cd34Se66 thin films was found to be very high because of the decrease of their crystallites sizes in comparison to the CdSe and Cd54Se46 thin films. From the FTIR spectra it was revealed that the Cd–Se peaks shifted to lower wavelengths with increase in selenium concentration. The SEM measurements for CdSe, Cd54Se46 and Cd34Se66 thin films reveal that the particle size and the crystalline nature decreased when Se content increased in the system.  相似文献   

4.
Cd1−xCoxO thin films (with molar ratios x=0.0–8.0%) were grown onto glass substrates via the sol–gel spin coating technique. XRD results indicate that a CdO single phase with a cubic polycrystalline structure is formed. The crystallinity of CdO thin films is gradually deteriorated with increasing the Co ratio. AFM images of the films confirm the decrease of the grain size of the CdO films with increasing Co content. The direct optical band gap is red shifted from 2.580 eV to 2.378 eV with the increase of Co content. The refractive index, the dispersion parameters, and the optical conductivity of CdO thin films showed an enhancement with increasing cobalt dopant ratio. The correlation between the structural modifications and the resultant optical properties are reported.  相似文献   

5.
Problems associated with the deposition and studies of the properties of thin titanium-dioxide films doped with silver nanoparticles, which can be used as antireflection coatings and transparent contacts in the fabrication of solar cells, are analyzed. The method of deposition onto a rotating substrate is used for synthesis. The structural and optical properties and the surface morphology of the TiO2–Ag films are examined. It is shown that the concentration of Ag nanoparticles in the reaction mixture affects the thickness of the resulting films, their refractive index, and their conductivity. The introduction of Ag nanoparticles into titanium-dioxide films gives rise to an absorption band at 420–430 nm, associated with the plasmon resonance in silver. Calcination at 400°C leads to a decrease in the intensity of this absorption band.  相似文献   

6.
Cadmium sulphide (CdS) thin films of different thicknesses ranging from 100 to 400 nm were prepared on polyethylene terephthalate (PET) substrates at room temperature by thermal evaporation technique in vacuum of about 3×10−5 Torr. The structural characterisation was carried out by X-ray diffraction (XRD). These studies confirm the proper phase formation of the cadmium sulphide structure. The root mean square (RMS) roughness of the films was measured using atomic-force microscopy. The root mean square roughness of the films increases as the film thickness increases. The energy gap of CdS on PET substrates was determined through the optical transmission method using an ultraviolet–visible spectrophotometer. The optical band gap values of CdS thin films slightly increase as the film thickness increases. The optical band gap energy was found to be in the range of 2.41–2.56 eV.  相似文献   

7.
Quantum confined nanostructures were prepared by depositing alternate CdSe and Se thin layers. The structural and optical characterizations of the prepared samples were carried out using X-ray diffractometer (XRD), Field emission scanning electron microscope (FE-SEM), UV–visible and photoluminescence spectrophotometers. XRD studies revealed that CdSe nanocrystals are polycrystalline in nature with hexagonal phase. The crystallite size of CdSe nanoparticles was found to be in the range of 8–14 nm. FE-SEM images also confirmed that the embedded nanocrystalline CdSe particles are a few nanometers in dimension having a spherical morphology. The quantum confinement of charge carriers in the multilayer (ML) films is evident from the shifting of absorption edge to lower wavelengths in the UV–visible spectra. An increase in the energy band gap with decreasing thickness of the CdSe sub-layer has been ascribed to quantum confinement effect and the subsequent crystallite size calculated from Brus approximation method is ~3.5 nm. Hence, the results indicate that the quantum confinement effect could be realized in CdSe nanocrystallites by ML stacking structure of CdSe and Se in appropriate thickness ratio.  相似文献   

8.
The present paper reports on a systematic study of the Cu doping effect on the optical, electrical and structural properties of ZnTe:Cu (Cu=0, 6, 8, and 10 at%) thin films. Polycrystalline Cu-doped ZnTe thin films were deposited on glass substrates at room temperature by thermal evaporation. A detailed characterization of the Cu-doped ZnTe films were performed by X-ray diffraction (XRD), Spectrophotometry, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. XRD of the as-deposited Cu-doped ZnTe films belong to single-phase cubic structure of ZnTe with preferential orientation along (111) planes revealed minor effect of Cu content. The interference pattern in optical transmission spectra was analyzed to determine energy band gap, refractive index, extinction coefficient and thickness of the films. Wemple–DiDomenico and Tauc's relation were used for the determination and comparison of optical band gap values. The formation of ZnTe and Cu-doped ZnTe phase was confirmed by FT-IR. AC conductivity in a frequency range of 0–7 MHz has been studied for investigation of the carriers hoping dynamics in the films. Raman spectra indicated merely typical longitudinal optical (LO) phonon mode of the cubic structure ZnTe thin film at 194 cm−1 because the excitation energy is well above of the optical band-gap of the material and exhibited a blue-shift from 194 to 203 cm−1 with Cu which could be associated to the substitution of Zn atom with Cu at the lattice sites.  相似文献   

9.
采用磁控溅射法制备了C掺杂TiO2薄膜,并研究了氮气引入溅射过程对薄膜光学性能的影响。利用X射线衍射仪、拉曼光谱仪、X射线光电子能谱仪、分光光度计和原子力显微镜分析了不同氮气流量下薄膜的微结构、元素价态、透光性能和表面形貌。结果表明,沉积的薄膜主要是非晶结构,拉曼光谱中存在少量锐钛矿相,且随着氮气流量增大,锐钛矿特征峰强度减弱,意味着晶粒出现细化。当氮气流量增大为4cm3/min时,C掺杂TiO2薄膜内氮元素含量为3.54%,其光学带隙从3.29eV变化至3.55eV,可见光区的光学透过率明显提高。可见改变氮气流量可实现对C掺杂TiO2薄膜光学带隙和光吸收率的有效调控。  相似文献   

10.
CdS is one of the highly photosensitive candidate of II–VI group semiconductor material. Therefore CdS has variety of applications in optoelectronic devices. In this paper, we have fabricated CdS nanocrystalline thin film on ultrasonically cleaned glass substrates using the sol–gel spin coating method. The structural and surface morphologies of the CdS thin film were investigated by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) respectively. The surface morphology of thin films showed that the well covered substrate is without cracks, voids and hole. The round shape particle has been observed in SEM micrographs. The particles sizes of CdS nanocrystals from SEM were estimated to be~10–12 nm. Spectroscopic properties of thin films were investigated using the UV–vis spectroscopy, Photoluminescence and Raman spectroscopy. The optical band gap of the CdS thin film was estimated by UV–vis spectroscopy. The average transmittance of CdS thin film in the visible region of solar spectrum found to be~85%. Optical band gap of CdS thin film was calculated from transmittance spectrum ~2.71 eV which is higher than bulk CdS (2.40 eV) material. This confirms the blue shifting in band edge of CdS nanocrystalline thin films. PL spectrum of thin films showed that the fundamental band edge emission peak centred at 459 nm also recall as green band emission.  相似文献   

11.
CdSe nanoparticle thin films were deposited on glass substrates by the chemical bath deposition (CBD) method at low deposition temperature ranging from room temperature up to 50 °C while the pH of the bath was kept constant at 12.1. The structural and morphological variation were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. The energy band gap and optical properties were characterized by the absorbance spectra. Rutherford backscattering spectroscopy (RBS) analysis reveals the excess of Cd rather than Se in depth profile along the thin film thickness. The prepared CdSe nanoparticles have cubic structure and by increasing the temperature the deposited films become continues, homogeneous and tightly adherent. The results also revealed that by increasing the deposition temperature from room temperature up to 50 °C, the band gap decreases from 3.52 eV up to 1.84 eV.  相似文献   

12.
D.R. Sahu   《Microelectronics Journal》2007,38(12):1252-1256
Ag-doped ZnO films were prepared by simultaneous rf magnetron sputtering of ZnO and dc magnetron sputtering of Ag on glass substrate. The influences of dopant content and substrate temperature on the properties of the as-grown films were investigated. Several analytical tools such as X-ray diffraction, spectrophotometer, atomic force microscopy, scanning electron microscopy and four-point probe were used to explore the possible changes in electrical and optical properties. The as-grown film has a preferred orientation in the (0 0 2) direction. As the amounts of the Ag dopant were increased, the crystallinity as well as the transmittance and optical band gap were decreased while the electrical resistivity increased. However, as the substrate temperature was increased, the crystallinity and the transmittance were increased. A small amount of Ag (<1 at%) lowered the resistivity by 30% with only a slight decrease in the visible transparency.  相似文献   

13.
Polycrystalline Cadmium Telluride (CdTe) thin films were prepared on glass substrates by thermal evaporation at the chamber ambient temperature and then annealed for an hour in vacuum ~1×10−5 mbar at 400 °C. These annealed thin films were doped with copper (Cu) via ion exchange by immersing these films in Cu (NO3)2 solution (1 g/1000 ml) for 20 min. Further these films were again annealed at different temperatures for better diffusion of dopant species. The physical properties of an as doped sample and samples annealed at different temperatures after doping were determined by using energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD), Raman spectroscopy, transmission spectra analysis, photoconductivity response and hot probe for conductivity type. The optical band gap of these thermally evaporated Cu doped CdTe thin films was determined from the transmission spectra and was found to be in the range 1.42–1.75 eV. The direct energy band gap was found annealing temperatures dependent. The absorption coefficient was >104 cm−1 for incident photons having energy greater than the band gap energy. Optical density was observed also dependent on postdoping annealing temperature. All samples were found having p-type conductivity. These films are strong potential candidates for photovoltaic applications like solar cells.  相似文献   

14.
Textured nanocrystalline ZnO thin films are synthesized by ion beam assisted deposition. According to X-ray diffraction data, the crystallite size is ~25 nm. Thin (~15 nm) ZnO layers containing Ag nanoparticles are formed in a thin surface region of the films by the implantation of Ag ions with an energy of 30 keV and a dose in the range (0.25–1) × 1017 ion/cm2. The structure and optical properties of the layers are studied. Histograms of the size distribution of Ag nanoparticles are obtained. The average size of the Ag nanoparticles varies from 0.5 to 1.5–2 nm depending on the Ag-ion implantation dose. The optical transmittance of the samples in the visible and ultraviolet regions increases, as the implantation dose is increased. The spectra of the absorption coefficient of the implanted films are calculated in the context of the (absorbing film)/(transparent substrate) model. It is found that the main changes in the optical-density spectra occur in the region of ~380 nm, in which the major contribution to absorption is made by Ag nanoparticles smaller than 0.75 nm in diameter. In this spectral region, absorption gradually decreases, as the Ag-ion irradiation dose is increased. This is attributed to an increase in the average size of the Ag nanoparticles. It is established that the broad surface-plasmon-resonance absorption bands typical of nanocomposite ZnO films with Ag nanoparticles synthesized by ion implantation are defined by the fact that the size of the nanoparticles formed does not exceed 1.5–2 nm.  相似文献   

15.
Cadmium selenide (CdSe) thin films have been successfully prepared by the electrodeposition technique on indium doped tin oxide (ITO) substrates with aqueous solutions of cadmium sulphate and selenium dioxide. The deposited films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX), photoluminescence (PL), UV spectrometry and electrical resistivity measurements. XRD analysis shows that the films are polycrystalline in nature with hexagonal crystalline structure. The various parameters such as crystallite size, micro strain, dislocation density and texture coefficients were evaluated. SEM study shows that the total substrate surface is well covered with uniformly distributed spherical shaped grains. Photoluminescence spectra of films were recorded to understand the emission properties of the films. The presence of direct transition with band gap energy 1.75 eV is established from optical studies. The electrical resistivity of the thin films is found to be 106 Ω cm and the results are discussed.  相似文献   

16.
Cadmium selenide films were synthesized using simple electrodeposition method on indium tin oxide coated glass substrates. The synthesized films were post annealed at 200 °C, 300 °C and 400 °C. X-ray diffraction of the films showed the hexagonal structure with crystallite size <3 nm for as deposited films and 3–25 nm for annealed films. The surface morphology of films using field emission scanning electron microscopy showed granular surface. The high resolution transmission electron microscopy of a crystallite of the film revealed lattice fringes which measured lattice spacing of 3.13 Å corresponding to (002) plane, indicating the lattice contraction effect, due to small size of CdSe nanocrystallite. The calculation of optical band gap using UV–visible absorption spectrum showed strong red-shift with increase in crystallite size, indicating to the charge confinement in CdSe nanocrystallite.  相似文献   

17.
A consistent set of epitaxial, n-type conducting ZnO thin films, nominally undoped, doped with Ga or Al, or alloyed with Mg or Cd, was grown by pulsed laser deposition (PLD) on single-crystalline c-plane sapphire (0 0 0 1) substrates, and characterized by Hall measurement, and UV/VIS optical transmission spectroscopy.The optical band gap of undoped ZnO films at nearly 3.28 eV was shifted by alloying with Mg up to 4.5 eV and by alloying with Cd down to 3.18 eV, dependent on the alloy composition. In addition, highly doped ZnO:Al films show a blue-shifted optical absorption edge due to filling of electronic states in the conduction band.The Hall transport data of the PLD (Mg,Zn,Cd)O:(Ga,Al) thin films span a carrier concentration range of six orders of magnitude from 3 × 1014 to 3 × 1020 cm−3, which corresponds to a resistivity from 5 × 10−4 to 3 × 103 Ω cm. Structurally optimized, nominally undoped ZnO films grown with ZnO nucleation and top layer reached an electron mobility of 155 cm2/V s (300 K), which is among the largest values reported for heteroepitaxial ZnO thin films so far.Finally, we succeeded in combining the low resistivity of ZnO:Ga and the band gap shift of MgZnO in MgZnO:Ga thin films. This results demonstrate the unique tunability of the optical and electrical properties of the ZnO-based wide-band gap material for future electronic devices.  相似文献   

18.
Un-doped and lead (Pb) doped ZnO thin films were deposited by sol–gel spin coating technique. Structural, morphological and optical properties of the films were investigated by means of Pb doping, in the range of 1–4% (with 1 at% step). X-ray diffraction results indicated that all films have hexagonal wurtzite crystal structure. (002) Reflection peak has been seen as the most intense peak and the highest texture coefficient value. Grain size values of the films varied from 19.68 nm to 13.37 nm with the increasing Pb incorporation. The top-view and cross sectional scanning electron microscope images demonstrated that the films were made up of wrinkle network structures and the films' thicknesses changed in the range of 400–276 nm. The direct optical band gap was calculated in 3 different functions and a significant harmony was observed among them. Additionally, all results indicated that the direct optical band gap and the Urbach values of the films increase with the increasing Pb doping content. Besides, the effects of Pb content on the photoluminescence properties of ZnO films were evaluated and it was observed that the decrease in the photoluminescence intensity was based on the Pb content. Moreover, the correlation between the optical and structural properties suggested that the optical band gap of Pb doped ZnO films were influenced by the lattice parameters a and c.  相似文献   

19.
Undoped and Al doped lead sulfide (PbS) thin films were grown on soda lime glass substrates by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. Al content in aqueous cationic solution was varied by adding 0.5–2% of aluminum nitrate in step of 0.5. The characterization of the film was carried out using X-ray diffraction, scanning electron microscopy, and optical and electrical measurement techniques. X-ray diffraction analysis revealed that both the undoped and doped films were polycrystalline and exhibited galena type cubic structure with average crystallite size in the range of 15.5–30.9 nm. The compositional analysis results indicated that Pb, S and Al were present in the samples. Optical studies revealed prominent blue-shift in the absorption edge of as-deposited samples upon doping as compared to that of bulk PbS and this shift was due to a quantum confinement effect. The room temperature conductivity of the PbS thin films was in the range of 1.343×10−7–1.009×10−6  cm)−1for doped samples and 5.172×10−8 for undoped PbS thin film sample. The optical band gap energy has inverse relation with grain size and electrical conductivity is closely related to structural parameters like grain size, crystallinity and microstrain. The estimated lattice parameter, grain size, optical band gaps and electrical properties were correlated with Al concentration in the cationic solution.  相似文献   

20.
Copper indium disulfide (CuInS2) is an efficient absorber material for photovoltaic and solar cell applications. The structural, optical, photoluminescence properties and electrical conductivities could be controlled and modified by suitably doping CuInS2 thin films with dopants such as Zn, Sn, Bi, Cd, Na, N, O, P and As. In this work Zn (0.01 M) doped CuInS2 thin films are (Cu/In=1.25) deposited on to glass substrates in the temperature range 300–400 °C. It is observed that the film growth temperature, ion ratio (Cu/In=1.25) and Zn-doping affect structural, optical, photoluminescence and electrical properties of sprayed CuInS2 thin films. As the XRD patterns depict, Zn-doping facilitates the growth of CuInS2 thin films along (112) preferred plane and in other characteristic planes. The EDAX results confirm the presence of Cu, In, S and Zn in the films. The optical studies show, about 90% of light transmission occurs in the IR regions; hence Zn-doped CuInS2 can be used as an IR transmitter. The absorption coefficient (α) in the UV–visible region is found to be in the order of 104–105 cm−1 which is the optimum value for an efficient absorber. The optical band gap energies increase with increase of temperatures (1.66–1.78 eV). SEM photographs reveal crystalline and amorphous nature of the films at various temperature ranges. Photoluminescence study shows that well defined broad Blue and Green band emissions are exhibited by Zn-doped CuInS2 thin films. All the films present low resistivity (ρ) values and exhibit semiconducting nature. An evolution of p-type to n-type conductivity is obtained in the temperature range 325–350 °C. Hence, Zn species can be used as a donor and acceptor impurity in CuInS2 thin films to fabricate efficient solar cells, photovoltaic devices and good IR Transmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号