首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On-line scheduling of scalable real-time tasks on multiprocessor systems   总被引:1,自引:0,他引:1  
The computation time of scalable tasks depends on the number of processors allocated to them in multiprocessor systems. As more processors are allocated to a scalable task, the overall computation time of the task decreases but the total amount of processors’ time devoted to the execution of the task, called workload, increases due to parallel execution overhead. In this paper, we propose a task scheduling algorithm that utilizes the property of scalable tasks for on-line and real-time scheduling. In the proposed algorithm, the total workload of all scheduled tasks is reduced by managing processors allocated to the tasks as few as possible without missing their deadlines. As a result, the processors in the system have less load to execute the scheduled tasks and can execute more newly arriving tasks before their deadlines. Simulation results show that the proposed algorithm performs significantly better than the conventional algorithm based on a fixed number of processors to execute each task.  相似文献   

2.
Many partitioned scientific programs can be modeled as iterative executions of computational tasks and represented by iterative task graphs (ITGs). An ITG may or may not have dependence cycles. In this paper, we consider the symbolic scheduling of ITGs on distributed memory architectures with nonzero communication overhead and propose heuristic algorithms for scheduling both cyclic and acyclic ITGs without searching an entire iteration space. Our approach incorporates techniques of software pipelining, graph unfolding, directed acyclic graph (DAG) scheduling, and load balancing. We analyze the asymptotic optimality of the algorithms to show that the derived schedules are competitive to optimal solutions. We also study the sensitivity of scheduling performance on inaccurate weights. Finally, we present experimental results to demonstrate the effectiveness of the optimization techniques  相似文献   

3.
A scalable backplane topology which allows a practically unlimited number of modules with identical interfaces is presented. Short, buffered, point-to-point connections overcome clock skew problems. Synchronized, pipelined data transfer operations ensure high throughput and reasonably low latency times for fine-grain parallel algorithms. A simple bus interface logic without any special hardware configuration guarantees a cheap implementation with standard FPGAs. The measured performance in our FPGA based prototype with 32 bit wide data bus shows a throughput of 160 Mbytes/s for each module with 75 ns latency time between modules.  相似文献   

4.
The scheduling of real-time tasks with primary-backup-based fault-tolerant requirements has been an important problem for several years. Most of the known scheduling schemes are non-adaptive in nature meaning that they do not adapt to the dynamics of faults and task's parameters in the system. In this paper, we propose an adaptive fault-tolerant scheduling scheme that has a mechanism to control the overlap interval between the primary and backup versions of tasks such that the overall performance of the system is improved. The overlap interval is determined based on the observed fault rate and task's soft laxity. We also propose a new performance index, called SR index, that integrates schedulability (S) and reliability (R) into a single metric. To evaluate the proposed scheme, we have conducted analytical and simulation studies under different fault and deadline scenarios, and found that the proposed adaptive scheme adapts to system dynamics and offers better SR index than that of the non-adaptive schemes.  相似文献   

5.
In this paper, we propose a method about task scheduling and data assignment on heterogeneous hybrid memory multiprocessor systems for real‐time applications. In a heterogeneous hybrid memory multiprocessor system, an important problem is how to schedule real‐time application tasks to processors and assign data to hybrid memories. The hybrid memory consists of dynamic random access memory and solid state drives when considering the performance of solid state drives into the scheduling policy. To solve this problem, we propose two heuristic algorithms called improvement greedy algorithm and the data assignment according to the task scheduling algorithm, which generate a near‐optimal solution for real‐time applications in polynomial time. We evaluate the performance of our algorithms by comparing them with a greedy algorithm, which is commonly used to solve heterogeneous task scheduling problem. Based on our extensive simulation study, we observe that our algorithms exhibit excellent performance and demonstrate that considering data allocation in task scheduling is significant for saving energy. We conduct experiments on two heterogeneous multiprocessor systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
For the automatic control systems with tight real time, construction of feasible schedules under the given job execution deadlines was considered, and in addition the constraints on processor memory were taken into consideration. Two methods were developed to solve this problem. The first method is based on reducing the original problem to the search of a multi-commodity flow in a special network. The second method offers a fast algorithm to determine a feasible schedule for the uniprocessor case.Translated from Avtomatika i Telemekhanika, No. 2, 2005, pp. 138–147.Original Russian Text Copyright © 2005 by Guz, Furugyan.  相似文献   

7.
We present the first Utility Accrual (or UA) real-time scheduling algorithm for multiprocessors, called the global Multiprocessor Utility Accrual scheduling algorithm (or gMUA). The algorithm considers an application model where real-time activities are subject to time/utility function time constraints, variable execution time demands, and resource overloads where the total activity utilization demand exceeds the total capacity of all processors. We consider the scheduling objective of (1) probabilistically satisfying lower bounds on each activity’s maximum utility, and (2) maximizing the system-wide, total accrued utility. We establish several properties of gMUA including optimal total utility (for a special case), conditions under which individual activity utility lower bounds are satisfied, a lower bound on system-wide total accrued utility, and bounded sensitivity for assurances to variations in execution time demand estimates. Finally, our simulation experiments validate our analytical results and confirm the algorithm’s effectiveness.  相似文献   

8.
A genetic algorithm for multiprocessor scheduling   总被引:6,自引:0,他引:6  
The problem of multiprocessor scheduling can be stated as finding a schedule for a general task graph to be executed on a multiprocessor system so that the schedule length can be minimized. This scheduling problem is known to be NP-hard, and methods based on heuristic search have been proposed to obtain optimal and suboptimal solutions. Genetic algorithms have recently received much attention as a class of robust stochastic search algorithms for various optimization problems. In this paper, an efficient method based on genetic algorithms is developed to solve the multiprocessor scheduling problem. The representation of the search node is based on the order of the tasks being executed in each individual processor. The genetic operator proposed is based on the precedence relations between the tasks in the task graph. Simulation results comparing the proposed genetic algorithm, the list scheduling algorithm, and the optimal schedule using random task graphs, and a robot inverse dynamics computational task graph are presented  相似文献   

9.
EDZL (Earliest Deadline first until Zero Laxity) is an efficient and practical scheduling algorithm on multiprocessor systems. It has a comparable number of context switch to EDF (Earliest Deadline First) and its schedulable utilization seems to be higher than that of EDF. Previously, there was a conjecture that the utilization bound of EDZL is 3m/4=0.75m for m processors. In this paper, we disprove this conjecture and show that the utilization bound of EDZL is no greater than m(1−1/e)≈0.6321m, where e≈2.718 is the Euler's number.  相似文献   

10.
An increasing interest is being shown in the use of multimicroprocessor systems in a variety of applications. It is often desirable that the constituent processors have a fast communications link for the sharing of data and/or results. Both of these aims can be achieved by the sharing of blocks of memory between the two or more processors; this method has the added advantage of little, or in some cases no, software overhead. The design of a shared memory system for Motorola MC6809E microprocessors is presented.  相似文献   

11.
The current state-of-the-art generational garbage collector pauses all the program threads when it performs young and old generation garbage collection. As the number of program threads increases, the delay due to garbage collection also increases, thus restricting the scalability of the collector. In order to improve the scalability and reduce the pause time, an on-the-fly generational garbage collector called Yama is proposed for multiprocessor systems. This uses the on-the-fly deferred reference counting in the young generation and the DLG (Doligez Leroy Gonthier) on-the-fly mark and sweep garbage collector in the old generation. We have proposed and experimented with two novel variations of the on-the-fly deferred reference counting called Chitragupt1 and Chitragupt2 in the young generation. Yama does not pause all the application threads simultaneously. An adaptive tenuring policy based on object reference count and survival rate is also proposed. Yama has been implemented in the IBM Jikes RVM (research virtual machine). The above claims are supported with experimental results for standard benchmark programs. The results show that Yama has an extremely low pause time in both the young and the old generation. The pause time reduction results in better response times for the user programs.  相似文献   

12.
Deng  Zexi  Cao  Dunqian  Shen  Hong  Yan  Zihan  Huang  Huimin 《The Journal of supercomputing》2021,77(10):11643-11681
The Journal of Supercomputing - Recent studies mainly focus on high performance or low power consumption for task scheduling on heterogeneous multiprocessor systems (HMSs). Dynamic voltage and...  相似文献   

13.
Reliability-aware power management (RAPM) has been a recent research focus due to the negative effects of the popular power management technique dynamic voltage and frequency scaling (DVFS) on system reliability. As a result, several RAPM schemes have been studied for uniprocessor real-time systems. In this paper, for a set of frame-based independent real-time tasks running on multiprocessor systems, we study global scheduling based RAPM (G-RAPM) schemes. Depending on how recovery blocks are scheduled and utilized, both individual-recovery and shared-recovery based G-RAPM schemes are investigated. An important dimension of the G-RAPM problem is how to select the appropriate subset of tasks for energy and reliability management (i.e., scale down their executions while ensuring that they can be recovered from transient faults). We show that making such decision optimally (i.e., the static G-RAPM problem) is NP-hard. Then, for the individual-recovery based approach, we study two efficient heuristics, which rely on local and global task selections, respectively. For the shared-recovery based approach, a linear search based scheme is proposed. The schemes are shown to guarantee the timing constraints. Moreover, to reclaim the dynamic slack generated at runtime from early completion of tasks and unused recoveries, we also propose online G-RAPM schemes which exploit the slack-sharing idea studied in previous work. The proposed schemes are evaluated through extensive simulations. The results show the effectiveness of the proposed schemes in yielding energy savings while simultaneously preserving system reliability and timing constraints. For the static version of the problem, the shared-recovery based scheme is shown to provide better energy savings compared to the individual-recovery based scheme, in virtue of its ability to leave more slack for DVFS. Moreover, by reclaiming the dynamic slack generated at runtime, online G-RAPM schemes are shown to yield better energy savings.  相似文献   

14.
With the emergence of multicore processors, the research on multiprocessor real-time scheduling has caught more researchers’ attention recently. Although the topic has been studied for decades, it is still an evolving research field with many open problems. In this work, focusing on periodic real-time tasks with quantum-based computation requirements and implicit deadlines, we propose a novel optimal scheduling algorithm, namely boundary fair (Bfair), which can achieve full system utilization as the well-known Pfair scheduling algorithms. However, different from Pfair algorithms that make scheduling decisions and enforce proportional progress (i.e., fairness) for all tasks at each and every time unit, Bfair makes scheduling decisions and enforces fairness to tasks only at tasks’ period boundaries (i.e., deadlines of periodic tasks). The correctness of the Bfair algorithm to meet the deadlines of all tasks’ instances is formally proved and its performance is evaluated through extensive simulations. The results show that, compared to that of Pfair algorithms, Bfair can significantly reduce the number of scheduling points (by up to 94%) and the overhead of Bfair at each scheduling point is comparable to that of the most efficient Pfair algorithm (i.e., PD2). Moreover, by aggregating the time allocation of tasks for the time interval between consecutive period boundaries, the resulting Bfair schedule can dramatically reduce the number of required context switches and task migrations (as much as 82% and 85%, respectively) when compared to those of Pfair schedules, which in turn reduces the run-time overhead of the system.  相似文献   

15.
Performance heterogeneous multicore processors (HMP for brevity) consisting of multiple cores with the same instruction set but different performance characteristics (e.g., clock speed, issue width), are of great concern since they are able to deliver higher performance per watt and area for programs with diverse architectural requirements than comparable homogeneous ones. However, such power and area efficiencies of performance heterogeneous multicore systems can only be achieved when workloads are matched with cores according to both the properties of the workload and the features of the cores.  相似文献   

16.
Current on-chip network and inter-chip interconnection are designed separately. However, this traditional design methodology faces a great challenge: in a multi-chip system, each many-core chip contains hundreds or thousands of processors. The increasing number of on-chip processors must share one input/output unit to interface with the inter-chip interconnection. The increased network usage at the chip interface may create an uneven traffic load in the on-chip network. That is, traffic jams could occur in the chip area around the input/output unit. New technologies, such as through silicon via and silicon interposer, can directly connect networks on chips. These technologies can improve communication performance and reduce power consumption by omitting the input/output unit. This paper proposes a novel routing scheme to deal with the network scalability issues related to the many-core and multi-chip system-in-package paradigm. The proposed scheme can also enhance the fault-tolerance of nano-scale communication in deep-submicron designs.  相似文献   

17.
A hybrid evolutionary approach for heterogeneous multiprocessor scheduling   总被引:1,自引:1,他引:0  
This article investigates the assignment of tasks with interdependencies in a heterogeneous multiprocessor environment; specific to this problem, task execution time varies depending on the nature of the tasks as well as with the processing element assigned. The solution to this heterogeneous multiprocessor scheduling problem involves the optimization of complete task assignments and processing order between the assigned processors to arrive at a minimum makespan, subject to a precedence constraint. To solve an NP-hard combinatorial optimization problem, as is typified by this problem, this paper presents a hybrid evolutionary algorithm that incorporates two local search heuristics, which exploit the intrinsic structure of the solution, as well as through the use of specialized genetic operators to promote exploration of the search space. The effectiveness and contribution of the proposed features are subsequently validated on a set of benchmark problems characterized by different degrees of communication times, task, and processor heterogeneities. Preliminary results from simulations demonstrate the effectiveness of the proposed algorithm in finding useful schedule sets based on the set of new benchmark problems.  相似文献   

18.
《Parallel Computing》2007,33(10-11):700-719
We explore runtime mechanisms and policies for scheduling dynamic multi-grain parallelism on heterogeneous multi-core processors. Heterogeneous multi-core processors integrate conventional cores that run legacy codes with specialized cores that serve as computational accelerators. The term multi-grain parallelism refers to the exposure of multiple dimensions of parallelism from within the runtime system, so as to best exploit a parallel architecture with heterogeneous computational capabilities between its cores and execution units. We investigate user-level schedulers that dynamically “rightsize” the dimensions and degrees of parallelism on the cell broadband engine. The schedulers address the problem of mapping application-specific concurrency to an architecture with multiple hardware layers of parallelism, without requiring programmer intervention or sophisticated compiler support. We evaluate recently introduced schedulers for event-driven execution and utilization-driven dynamic multi-grain parallelization on Cell. We also present a new scheduling scheme for dynamic multi-grain parallelism, S-MGPS, which uses sampling of dominant execution phases to converge to the optimal scheduling algorithm. We evaluate S-MGPS on an IBM Cell BladeCenter with two realistic bioinformatics applications that infer large phylogenies. S-MGPS performs within 2–10% of the optimal scheduling algorithm in these applications, while exhibiting low overhead and little sensitivity to application-dependent parameters.  相似文献   

19.
Decomposition schemes for generation and optimization of strategies of process scheduling and resource allocation in scalable systems are proposed. They include an environment for computation, data exchange, and storage. The schemes allow the decomposition of the problem of strategy synthesis for the totality of parameterized models of data processing, controlling, and transmission with the use of partial and vector quality criteria.  相似文献   

20.
An algorithm is proposed for scheduling dependent tasks in time-varying heterogeneous multiprocessor systems, in which computational power and links between processors are allowed to change over time. Link contention is considered in the multiprocessor scheduling problem. A linear switching-state space-modeling paradigm is introduced to enable theoretical analysis from a system engineering perspective. Theoretical analysis of this model shows its robustness against changes in processing power and link failure. The proposed algorithm uses a fuzzy decision-making procedure to handle changes in the multiprocessor system. The efficiency of the proposed algorithm is illustrated by several random experiments and comparison against a recent benchmark approach. The results show up to 18% average improvement in makespan, especially for larger scale systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号