首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过离子交换和水热两步合成过程简单制备了Yb3+、Er3+和Eu3+共掺杂锐钛矿型TiO2纳米带。该3种离子共掺杂未导致TiO2结构和形貌发生变化。光学特性测试结果表明,由于稀土离子掺杂浓度低,Eu3+掺杂未改变由Yb3+和Er3+产生的上转换发射峰位,但可观察到因上转换发光激发的Eu3+荧光发射峰;Eu3+荧光光谱也未受到Yb3+和Er3+掺杂的影响。通过对掺杂样品上转换发光机理的考察证实,上转换发光过程是双光子过程,但TiO2和Eu3+掺杂对此发光过程有明显影响。  相似文献   

2.
樊国栋  赵琪  陈华  李阿峰 《功能材料》2013,44(9):1226-1229
以尿素为燃料硼酸为助熔剂,采用燃烧法合成了Sr2CeO4∶Eu3+、Tb3+发光材料。测试结果表明,当Tb3+的掺杂为1%(摩尔分数)时,合成的样品为单相Sr2CeO4斜方晶系结构,其样品的激发光谱为240~370nm的宽带双峰,发射光谱为400~550nm宽带峰,余辉衰减曲线的结果显示,适量的掺杂Tb3+可以提高产品的发光性能。与Sr2CeO4∶Eu3+相比,掺杂Tb3+有利于形成结晶度好的固溶体,样品的发光强度明显提高。  相似文献   

3.
采用高温固相法合成了掺杂Ln(Ln=Gd3+,Cu+,Sm3+,Dy3+)作助激活离子的氯硅酸镁钙荧光粉。通过X射线衍射(XRD)对Ca8Mg(SiO4)4Cl2∶Eu2+,Ln进行了表征,结果表明Ln的共掺杂并没有影响基质晶体的面心立方结构。所合成的荧光粉发射峰值位于507nm的绿光区,激发光谱在330~430nm之间均有较强吸收,与紫光InGaN芯片(395nm)相匹配。掺杂Ln作助激活剂增强了荧光粉的发光强度。借助Uitert经验公式计算出Eu2+在Ca8Mg(SiO4)4Cl2基质中占据八配位Ca(Ⅱ)格位。  相似文献   

4.
用水热法制备了Er3+掺杂GdVO4纳米荧光粉,通过X射线衍射(XRD)、荧光(FL)光谱、红外光谱仪(FTIR)对合成样品的结构和发光性能进行表征。探讨了焙烧温度、pH值以及络合剂对GdVO4∶Er3+纳米晶的结构和发光的影响。在760nm近红外光和380nm紫外光激发下激发样品,出现了较强的525nm、553nm特征绿光上转换和下转换发射。其中525nm和553nm分别来自于Er3+离子的2 H11/2→4I15/2和4S3/2→4I15/2跃迁产生。  相似文献   

5.
采用高温固相反应法制备了一系列白光LED用CaSi2O2N2:0.05Eu2+,xDy3+,xLi+(0≤x≤0.03)荧光粉.利用X射线衍射仪对样品的物相结构进行了分析,结果表明:Dy3+和Li+离子的掺入没有改变CaSi2O2N2:Eu2+荧光粉的主晶相.利用荧光光谱仪对样品的发光性能进行了测试,发现所有样品的激发光谱均覆盖了从近紫外到蓝光的较宽范围,400 nm激发下得到的发射光谱为宽波段的单峰,峰值位于545 nm左右,是Eu2+离子5d-4f电子跃迁引起的.Dy3+离子掺杂可以提高CaSi2O2N2:Eu2+荧光粉的发光强度,Dy3+与Li+共掺杂可进一步提高荧光粉的发光强度,当Dy3+和Li+的掺杂量为1mol%时,荧光粉的发光强度达到最大值,是单掺杂Eu2+的荧光粉发光强度的157%.  相似文献   

6.
采用凝胶-燃烧法制备了Li2BaSiO4∶Eu3+红色荧光粉。用X射线衍射分析(XRD)表征了Li2BaSiO4∶Eu3+荧光粉的结构,重点考察了激活剂Eu3+的浓度对Li2BaSiO4∶Eu3+发光强度的影响。结果表明,Li2BaSiO4∶Eu3+荧光粉为六方晶系结构。以394nm的近紫外光激发样品,Li2Ba1-xSiO4∶xEu3+荧光粉发红光,其中以614.4nm发射峰发光最强。在800℃灼烧3h条件下,当Eu3+的浓度为5.5%时,Li2BaSiO4∶Eu3+荧光粉的发光性能最佳。Eu3+的掺杂对Li2BaSiO4∶Eu3+荧光粉的发射光谱的峰形和峰位无明显影响。  相似文献   

7.
采用溶剂热法和热分解法分别制备纳/微米的β-NaYF4:20%Yb3+,2%Er3+晶体.根据两种不同粒径颗粒的TG-DTA测试分析,对其进行不同温度的热处理。通过XRD、SEM、FT-IR以及PL等手段研究不同热处理温度对两种粒径的颗粒的尺寸、形貌以及上转换发光性能的影响.研究结果表明,随着热处理温度的升高,纳/微米颗粒的发光性能主要呈现出先升高后下降的趋势。与未作热处理样品对比发现,适当的热处理(580℃)可以提高纳米颗粒的发光强度,却不利于改善微米颗粒发光性能。分析认为,结晶质量的提高、缺陷浓度的降低以及有机配体的去除,导致了纳/微米颗粒的发光性能的逐步提高。而过高处理温度(>580℃)引起的相转变(β→α)和表面Na2CO3的生成又大大降低了稀土离子的发光效率。热处理过程中颗粒之间的不同团聚程度是造成纳/微米颗粒发光性能差异变化的主要原因。  相似文献   

8.
采用微波法合成了红色长余辉发光材料Y2O2S:Eu3+,Si 4+,Zn2+,研究了微波辐射功率和加热时间对制备Y2O2S:Eu3+,Si 4+,Zn2+的影响。并且对样品进行了XRD、SEM、荧光光谱和热释光谱等表征。XRD测试表明所制备的Y2O2S:Eu3+,Si 4+,Zn2+为单相,六方晶系;荧光光谱测试表明,用λem=626nm作为监控波长,在200~400nm之间有宽的激发光谱,峰值位于325nm。而发射光谱的谱线较窄,来源于Eu3+的5 D0→7F2跃迁的发射峰627.0nm最强。其中以辐射功率为750w,反应时间为25min所制备的样品发光性能最好。  相似文献   

9.
上转换发光材料由于具备独特的热敏特性而被应用于非接触式光学温度传感技术,其中Ca0.5Gd(WO4)2具有良好的热稳定性和光学特性,非常适合作为温度传感器的基质材料。本工作采用高温固相法成功制备了Er3+、Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉,研究了不同Yb3+掺杂浓度对样品物相结构、微观形貌和发光性能的影响。随着Yb3+掺杂浓度的增加,Ca0.5Gd(WO4)2∶Er3+/Yb3+荧光粉的上转换和近红外发光强度先增加后减小,在Yb3+掺杂浓度为10%(摩尔分数,下同)时,发光强度均出现最大值。根据泵浦功率与发光强度的依赖关系可以得出,Er3+的上转换发光属于双光子吸收过程。此外,测量了样品Ca0....  相似文献   

10.
采用共沉淀法制备Tb3+,Yb3+共掺杂Y(PO3)3上转换发光材料,通过X射线粉末衍射仪(XRD)、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)和上转换荧光光谱仪(UPL)对制备产物的结构和性能进行表征分析.结果表明,所制备样品属于单斜晶系空间群为P21/c的Tb3+和Yb3+共掺杂Y(PO3)3晶体.在近红外光的激发下,所制备Y(PO3)3:x Tb3+,20%(摩尔分数,下同)Yb3+样品发射出Tb3+特征的蓝绿色光.Tb3+掺杂量直接影响着制备产物的上转换发光性能,当Tb3+掺杂量为2% ~10%时,Tb3+的5 D4→7 F6发射峰分裂为481 nm和491 nm两个发射峰;当掺杂量为5%~20%时,位于547 nm处绿光发射为最强发射峰;当Tb3+掺杂量高于20%时观察到浓度猝灭现象.Tb3+/Yb3+的掺杂量比例和近红外光激发功率密度对所制备样品的上转换发光性能也有明显影响.适当调节样品中Tb3+/Yb3+掺杂比例可实现对制备的Y(PO3)3:x Tb3+,20%Yb3+样品的上转换发射蓝绿光颜色的调控.对Y(PO3)3:Tb3+,Yb3+样品的上转换发光机理进行探索,其中属于Tb3+特征的5 D3→7 FJ(J=6,5,4)和5 D4→7 FJ(J=6,5,4,3)跃迁带发射分别属于三光子吸收和双光子吸收机制.  相似文献   

11.
采用高温固相法在碳粉还原气氛下合成蓝色长余辉发光材料Sr2MgSi2O7∶Eu2+,Dy3+。通过正交试验,以初始余辉亮度和余辉时间为评价指标,研究了烧结温度、Eu2+、Dy3+和硼酸的摩尔分数对发光材料余辉性能的影响。结果表明:各个因素在实验设定水平范围变化时,最佳合成工艺为烧结温度1300℃,Eu2+、Dy3+和硼酸的摩尔分数分别为2%,4%,10%。按照上述工艺条件合成的样品余辉性能最佳,初始余辉亮度可达2238mcd/m2,余辉时间超过1400s。样品具有250nm~450nm的激发范围,发射峰位于470nm。  相似文献   

12.
EDTA作为络合剂,在pH值为5的条件下,采用水热法制备了NaYF4∶Yb3+,Ho3+微米棱柱上转换材料,研究了掺杂浓度和晶粒尺寸对上转换发光特性的影响。实验发现材料发光主要以绿光为主,最佳的Yb3+、Ho3+掺杂浓度分别为25%和1%,高于此值均会出现浓度猝灭效应。通过改变溶液中NaF/NH4HF2摩尔比来调控晶粒的尺寸,发现随着晶体颗粒尺寸的增大,材料中Yb3+浓度增加,从而使上转换发光增强。  相似文献   

13.
采用高温固相法合成了Sr5(BO3)3Cl:Eu3+新型红色发光材料,并对其结构和发光特性进行了研究。X射线衍射测试表明合成材料为纯相Sr5(BO3)3Cl晶体。材料的主发射峰位于587,596,613nm和626nm,对应Eu3+的5 D0→7F1,7F2辐射跃迁。监测626nm发射峰,激发光谱主峰位于392nm,可被InGaN管芯有效激发。通过时间分辨光谱测得Eu3+离子5 D0能级的荧光寿命约为2.28ms。研究了Eu3+离子掺杂浓度对Sr5(BO3)3Cl:Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为16%(摩尔分数)。计算了Eu3+离子浓度猝灭的临界距离为1.46nm。测量了不同Eu3+浓度样品的色坐标,均位于色品图红光区,符合NTSC标准。  相似文献   

14.
通过高温固相方法合成了红色荧光粉Ca3Y2Si3O12∶Pr3+,研究了Pr3+掺杂浓度及助熔剂对荧光粉发光性能的影响。结果显示,所合成的荧光粉的主晶相为Ca3Y2Si3O12。通过分析荧光光谱,发现Ca3Y2Si3O12∶Pr3+硅酸盐荧光粉的有效激发范围可以在430~490nm范围内,并发射红光。在445nm激发下,样品发射光谱中的主发射峰分别位于610nm(3P0→3 H6)和644nm(3P0→3F2),其中610nm处峰值最大。通过改变Pr3+掺杂浓度,发现荧光粉发光强度先增大后减小,最佳Pr3+掺杂量x(Pr3+)为2.0%,超过最佳掺杂浓度表现为由离子间的相互作用导致的浓度淬灭。该荧光粉色温为2261℃。通过观察助熔剂的助熔效果,发现最佳的助熔剂H3BO3添加量为2.0%。  相似文献   

15.
首次研究了Ho3+掺杂对SrAl2O4∶Eu2+,Dy3+发光性能的影响。采用燃烧合成方法,在600℃条件下,合成Ho3+掺杂的SrAl2O4∶Eu2+,Dy3+新型长余辉光致发光材料。X射线衍射分析结果表明,合成的样品为单相SrAl2O4单斜晶系磷石英结构。光致发光光谱测量显示,合成样品的发射光谱是连续宽带谱,峰值位于510nm左右,激发光谱是单峰且峰值位于356nm的连续宽带谱。利用单光子计数系统测量了材料的余辉衰减曲线,结果显示Ho3+的适量掺杂可以明显提高铝酸锶的初始发光亮度。当Ho3+的掺入摩尔比例为0.005时,初始亮度是不掺杂Ho3+时的两倍多。对初始亮度增强的机理做了初步的探讨。  相似文献   

16.
欧阳艳  张晓蓉  王静  王茜  何晓燕 《材料导报》2016,30(10):33-37, 56
采用微波法合成了四方晶系的CaWO4∶Eu~(3+)红色荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光致发光光谱(PL)等分析手段对样品的结构、形貌以及发光性能进行了表征。研究了结构控制剂种类、PEG添加量、Eu~(3+)掺杂浓度、设置温度、反应物浓度等对合成CaWO4∶Eu~(3+)发光材料的发光性能以及形貌的影响。实验结果表明,所合成四方晶系的CaWO4∶Eu~(3+)红色荧光粉在393nm紫外激发下的发射主峰位置在614nm处。当反应条件分别为PEG添加量为1.00g、Eu~(3+)掺杂浓度20%、设置温度为120℃、反应物浓度为0.06mol/L时样品具有最强的发光强度。在紫外灯照射下,样品呈现出明亮的红色。  相似文献   

17.
用二次熔融法制备了SrAl2O4∶Eu2+,Dy3+荧光粉掺杂低熔点硫磷酸盐的发光玻璃复合材料。采用DSC、透射光谱、XRD、发射光谱、SEM等测试手段对样品进行了表征。研究了熔制温度、熔制时间等因素对复合材料光学性能的影响。结果表明:熔制温度为700℃、熔制时间为30min的发光玻璃复合材料在365nm紫外光激发下,发射出峰值波长为514nm的黄绿光,保留了荧光粉的发光性能。  相似文献   

18.
冯丽  吴银素 《材料导报》2013,27(8):25-27,35
采用高温固相法制备了Er3+/Yb3+、Tm3+/Yb3+和Er3+/Tm3+/Yb3+共掺杂的氟氧化物玻璃SiO2-Al2O3-Na2O-ZnF2,研究了980nm近红外激光激发下的上转换发光性质。研究表明,Er3+/Yb3+共掺样品呈现了上转换绿光和红光发射,Tm3+/Yb3+共掺样品呈现了强的上转换蓝光发射和弱的红光发射,Er3+/Tm3+/Yb3+三掺样品呈现了上转换白光发射。对上转换发光强度和激光功率的研究表明上转换绿光和红光发射是两光子吸收过程,上转换蓝光发射是三光子吸收过程。  相似文献   

19.
采用共沉淀法合成了微米花状,四方晶系的NaLa(MoO4)2∶Eu3+红色荧光粉。利用X射线衍射仪、扫描电子显微镜、光致发光光谱等分析手段对样品的结构、形貌以及发光性能进行了表征。研究了结构控制剂种类、聚乙烯吡咯烷酮(PVP)添加量、Eu3+掺杂浓度、反应物浓度等系列对合成NaLa(MoO4)2∶Eu3+发光材料发光性能的影响。结果表明:所合成的微米花状NaLa(MoO4)2∶Eu3+红色荧光粉为四方晶系,在464nm紫外激发下,观察到其发射主峰位置在615nm。当反应条件分别为PVP=0.75g、Eu3+掺杂浓度10%、反应物浓度为0.12mol/L时样品具有最强的发光强度。在紫外灯照射下,样品呈现出明亮的红色。  相似文献   

20.
采用固相法成功合成了具有β-Ca3(PO4)2结构的发光材料Ca8MgY(PO4)7∶Re3+(Re3+=Eu3+,Ce3+,Tb3+)。XRD、FT-IR及TG-DSC的测试结果表明,该发光材料的最佳烧结温度为1 200℃。PL测试结果表明,在252nm紫外光激发下,Ca8MgY(PO4)7∶Eu3+呈现Eu3+的特征发射,其中以位于612nm红光发射为主(5D0-7F2),Eu3+的最佳掺杂浓度为5.0%(摩尔分数)。在295nm紫外光激发下,Ce3+激活的Ca8MgY(PO4)7由峰值位于363nm的带状5d1-4f1发射为主,Ce3+的最佳掺杂浓度为1.0%(摩尔分数)。在228nm紫外光激发下,低掺杂浓度的Ca8MgY(PO4)7∶Tb3+以位于5D3-7FJ的蓝光发射为主,高掺杂浓度的Ca8MgY(PO4)7∶Tb3+以5D4-7FJ绿光发射为主,这是由于Tb3+的交叉弛豫造成的。Tb3+的最佳掺杂浓度为7.0%(摩尔分数)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号