首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
为了提高铜的耐蚀性,用自组装技术在铜表面上制备了3-巯基丙基三甲氧基硅烷(MPTS)自组装膜. 利用红外光谱和扫描电子显微镜研究了该膜的结构,运用极化曲线和交流阻抗图谱等电化学方法考察了 MPTS膜在0.5 mol/L NaOH溶液中对铜电极的缓蚀性能.结果表明,MPTS在铜表面可能以化学吸附方式强烈吸附到铜表面, 同时在表面以Si-O-Si键自我交联形成了线性低聚物, MPTS浓度越高, 其膜更致密.与裸铜电极相比,经MPTS修饰后的铜的腐蚀电位正移200 mV, 腐蚀电流降低一个数量级,其缓蚀效率为86.5%.  相似文献   

2.
合成了2-苯并噻唑基-4-甲氧基苯腙,采用元素分析、红外光谱和液质联用等对其结构进行了表征.运用自组装技术在钢片表面形成了2-苯并噻唑基-4-甲氧基苯腙自组装膜,采用金相显微镜观察了自组装膜的表面形貌,并采用静态失重试验和电化学分析手段研究了2-苯并噻唑基-4-甲氧基苯腙自组装膜在1mol/L HCl中对45#钢的缓蚀作用.结果表明,随着自组装溶液浓度的增加和自组装时间的延长,2-苯并噻唑基-4-甲氧基苯腙自组装膜的缓蚀效率逐渐增大.当自组装溶液浓度为0.1mol/L、时间为18h时,缓蚀效果达到最佳.  相似文献   

3.
钱建华  俞卓汗  张蕾  刘琳 《材料保护》2013,46(6):11-14,5,6
将自组装膜和稀土转化膜结合可以强化各自的优点,制成的复合膜的耐蚀性能得到极大提高,目前此类研究还不系统。在铜片表面先自组装硅烷膜,再铈盐转化成膜,以复合膜耐蚀性为评价指标,对自组装时间、铈盐转化时间进行优化,对优化条件制成的复合膜的耐蚀性进行研究,与单一的硅烷自组装膜、铈盐转化膜进行比较,并对硅烷-铈盐复合膜的成膜、耐蚀机理进行了探讨。结果表明:硅烷自组装膜与铈盐转化膜的最佳成膜时间分别为10.0 min和1.0 min,硅烷-铈盐复合膜对铜的防腐蚀性能比2种单一膜的有明显提高。  相似文献   

4.
卢爽  刘琳  谢锦印  武亚琪  邢锦娟 《材料导报》2021,35(20):20195-20199
采用静态失重、极化曲线、交流阻抗(EIS)方法测试席夫碱自组装膜在3.5%(质量分数)NaCl溶液中对铜的缓蚀作用,考察了浓度和时间两个因素.结果表明,当浓度为15 mmol/L,组装时间为14 h时,合成的缓蚀剂缓蚀性能较好,缓蚀率可达99.89%.表面形貌分析结果表明,席夫碱化合物在铜表面形成簇状物质.拉曼光谱分析结果表明,席夫碱通过咪唑环和C=N键垂直吸附于金属表面.光学接触角测量结果表明,缓蚀剂表面不易被浸润,疏水性较好.  相似文献   

5.
聚乙烯吡略烷酮自组装膜对铜的缓蚀作用   总被引:1,自引:0,他引:1  
自组装膜对金属防腐蚀有极好的效用。为了进一步弄清聚乙烯吡咯烷酮对铜的缓蚀性能,用自组装技术在铜电极表面制备了聚乙烯吡咯烷酮自组装膜,利用电化学方法研究了自组装膜对铜在NaCl溶液中的缓蚀作用。结果表明,在0.5mol/LNaCl溶液中,随组装时间的增加,铜电极的电荷传递电阻增大,腐蚀电流密度下降,组装24h后对铜的缓蚀效率为99.9%,缓蚀性能优异。  相似文献   

6.
采用增重法和金相显微技术研究了含硫油样对铜片的腐蚀行为,以及噻二唑类缓蚀剂(用A表示)在含硫量为50μg/g的模拟油样中对铜的缓蚀性能。结果表明,缓蚀剂A对铜片具有良好的缓蚀效果,且随着浓度的增加,缓蚀效率提高。当缓蚀剂浓度为25.0μg/g时,缓蚀效率达到86.45%。经吸附等温线拟合可知,缓蚀剂A在铜片表面的吸附遵循Langmuir吸附等温方程,属于化学吸附。  相似文献   

7.
银保护用自组装单分子膜的防腐蚀研究   总被引:5,自引:0,他引:5  
用3-巯基丙基三甲氧基硅烷(3-MPS)在银电极表面制备了自组装单分子膜,研究了该组装膜在0.1mol/L NaOH中对银的防护作用.通过极化曲线、接触角及俄歇电子能谱等方法对组装膜的极化电阻、腐蚀电流及表面状况进行了研究表征,得到了最佳MPS组装液浓度为1×10-4mol/L和最佳组装时间为6 h下的腐蚀电位、腐蚀电流密度、极化电阻和缓蚀率等结果.  相似文献   

8.
镀锌钢板硅烷与稀土铈盐、镧盐复合钝化的性能及机理   总被引:3,自引:0,他引:3  
试验采用γ-氨丙基三乙氧基硅烷(γ-APS)协同稀土铈盐和镧盐钝化镀锌钢板.通过先在试样表面自组装一层γ-APS薄膜,再沉积稀土转化膜制备硅烷稀土复合膜.采用电化学交流阻抗技术(EIS)、盐雾试验检测复合膜的耐腐蚀性,结果表明复合膜的耐腐蚀性和致密性相对于单一硅烷、稀土转化膜大幅度提高,其中硅烷-铈盐复合膜比硅烷-镧盐复合膜耐腐蚀,中性盐雾试验时间达到76 h.原子力显微镜检测结果表明,复合膜相对于单一稀土转化膜平整.EDS检测结果得出,硅烷与稀土化合物发生了协同作用,促进了稀土转化膜在锌表面沉积.初步探讨了复合膜的成膜机理和耐腐蚀机理.  相似文献   

9.
为改善铝及铝合金的表面防腐蚀性能,在γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH-560)基础溶液中添加不同含量的硝酸镧,在6061铝合金表面制备不同硝酸镧浓度掺杂的硅烷-镧盐复合膜;采用极化曲线、硫酸铜点滴、腐蚀失重率试验等方法分析膜层性能,并得出了镧盐最佳用量。对比分析了最佳镧盐用量下复合膜、硅烷膜和稀土转化膜的耐蚀性能。结果表明:在KH-560硅烷膜制备过程中添加一定量硝酸镧可有效提高硅烷膜的耐蚀性,添加15 g/L硝酸镧时,形成的复合膜层致密且没有裂纹,耐蚀性最好;与单一的硅烷、镧盐转化膜相比,复合膜表现出很好的耐蚀性。  相似文献   

10.
为了提高钢材表面硅烷膜的耐腐蚀性,在硅烷液中加入Na_2ZrF_6,在40Cr钢表面制备了掺杂Na_2ZrF_6的硅烷膜。采用电化学法和失重法分析了Na_2ZrF_6掺杂硅烷膜的耐蚀性,采用光学显微镜和扫描电镜观察掺杂硅烷膜的形貌,采用傅立叶红外光谱仪分析了Na_2ZrF_6掺杂硅烷液的特征峰,采用X射线光电子能谱仪分析了掺杂硅烷膜的元素价态及结合能;研究了Na_2ZrF_6掺杂对硅烷成膜性及耐蚀性能的影响。结果表明:硅烷液中Na_2ZrF_6的添加量为0.001 mol/L时,40Cr钢表面的掺杂硅烷膜性能最好;Na_2ZrF_6掺杂硅烷膜表面致密,其表面存在一些微小球状颗粒,且存在掺杂的Zr元素;掺杂硅烷膜能够有效提高40Cr钢的耐腐蚀性;掺杂硅烷膜以表面的Zr元素形成的化合物来阻碍阳极活性区溶解,提高了40Cr钢的耐蚀性。  相似文献   

11.
采用恒电位电化学沉积法,以十二烷基苯磺酸钠(SDBS)为掺杂剂,通过调节吡咯单体浓度(0.05mol/L、0.10mol/L、0.15mol/L、0.20mol/L)在Q235钢表面制备出系列聚吡咯(PPy)膜层。红外光谱表征显示SDBS成功掺杂到PPy中;扫描电镜显示吡咯单体浓度为0.10mol/L时,得到的PPy颗粒尺寸最小,膜层最为致密;动电位极化曲线和电化学阻抗谱的测试研究了Q235钢表面系列PPy膜层的防腐蚀性能,确定了Py单体浓度为0.10mol/L时,PPy膜层的腐蚀电流Icorr和腐蚀速率CR最小,表现出优异的防腐蚀性能。  相似文献   

12.
吕雪飞  吕颖  甘树坤 《材料保护》2019,52(4):102-105
为了提高H62黄铜合金的表面性能,通过正交试验获得了最佳锅、钵双稀土处理液配方。利用硝酸点滴、中性盐雾试验评价了H62黄铜合金钝化膜的耐蚀性能,通过电子探针(EPMA)观测了其表面形态结构及元素分布,利用电化学方法表征了 H62黄铜表面钝化膜在3.5%NaCl溶液中的缓蚀行为,采用XRD对H62黄铜表面钝化膜的成分进行了检测。结果表明:H62黄铜合金由镉、钵双稀土处理液钝化成膜的主要成分为Cu2O,CeO2,La(OH)3,Ce(OH)4;致密的钝化膜耐硝酸点滴时间达到21.98s,在3.5%NaCl溶液自腐蚀电位增加,腐蚀电流降低,腐蚀速度明显降低,耐蚀性能增加,耐中性盐雾性能明显优于鋪单一稀土处理液。  相似文献   

13.
用3种自制油溶性吡啶甲酰腙席夫碱在铜表面制备自组装单分子膜(SAMS),研究了该膜在3.5%NaCl中对铜的缓蚀作用。通过极化曲线法和交流阻抗法的研究,发现在3.5%NaCl溶液中,3种吡啶甲酰腙席夫碱对铜均有良好的缓蚀效果,其中L2B的缓蚀效果最好,L4B次之,后为L3B,常温下,缓蚀率分别为91.75%,90.68%和88.27%。同时缓蚀效果受温度影响不大。交流阻抗法测试结果表明,3种酰腙化合物在自组装膜和缓蚀过程中未发生分解,同时分析表明它们都是以抑制阴极为主的混合型缓蚀剂。最后通过密度泛函理论对其缓蚀机理进行了初步探讨。  相似文献   

14.
利用电化学测试和表面分析技术,研究了2,5-二巯基-1,3,4噻二唑(DMTD)在硫-乙醇溶液中对金属银、铜的缓蚀性能,结合量子化学计算和分子动力学模拟对DMTD在金属表面的吸附行为和缓蚀作用机理进行了分析讨论。结果表明,DMTD在50mg/L的硫-乙醇溶液中,对金属银、铜均起到较好的缓蚀作用。极化曲线结果表明,当缓蚀剂DMTD浓度达到50mg/L时,缓蚀效率可以达到92.3%。表面分析技术表明,缓蚀剂的加入在金属表面形成吸附膜,明显抑制了腐蚀速率。量化计算和分子动力学模拟得到了缓蚀剂分子的活性位点和缓蚀剂在金属表面的吸附形态。  相似文献   

15.
复合气相缓蚀剂对纯铜缓蚀的研究   总被引:2,自引:0,他引:2  
铜应用广泛,但在湿度较高的腐蚀性介质中其易被腐蚀,采用苯骈三氮唑(BTA)和酚类W制成一种新型复合气相缓蚀剂,采用原子分光光度计和电化学测试方法、扫描电镜和激光拉曼显微镜研究了该复合气相缓蚀剂对纯铜的缓蚀性能及其缓蚀机理.结果表明,该复合气相缓蚀剂在铜表面形成的膜是一种自组装缓蚀膜,具有很好的防蚀和拒水性能.  相似文献   

16.
目前,常规紫铜无铬转化液主要由苯骈三氮唑(BTA)、配位剂和表面活性剂组成,所得转化膜的耐蚀性较差。在常规无铬转化液中加入钼酸钠和硝酸镧,并确定了一种环保型紫铜表面无铬成膜工艺:12 g/LBTA,8 g/L Na2MoO4,4 g/L La(NO3)3.6H2O,10 g/L C6H8O7,4 g/L C7H6O6S.2H2O,温度50℃,时间5 min。通过中性盐雾试验测试了所得转化膜的耐蚀性;采用极化曲线和交流阻抗谱分析了转化膜在1 mol/L HCl中的电化学行为,同时用场发射扫描电镜(FESEM)观察了转化膜的表面形貌。结果表明:本工艺无铬、环保,可在紫铜表面形成完整、致密的转化膜,缓蚀率达98.8%,耐蚀性优于铬酸盐钝化膜和常规无铬钝化膜。  相似文献   

17.
针对镁合金化学和电化学活性较高,与其他金属材料接触时易产生电偶腐蚀的特点,主要研究了其电偶腐蚀特性及环境因素的影响规律.采用电化学方法通过测定电偶电流密度,研究了添加约1%混合稀土RE(45%La,50?)的AZ91合金在NaCl溶液中与A3钢、紫铜偶接时的电偶腐蚀行为,探讨了溶液中氯离子浓度、偶接金属种类以及阴阳极面积比对电偶电流密度JgMg的影响.结果表明:Cl-浓度增大,JgMg变大;阴阳极面积比越大,JgMg也越大;偶接金属A3钢比紫铜更易促进镁合金的腐蚀;稀土La,Ce的添加使电偶腐蚀有效距离变窄.  相似文献   

18.
为了解葡萄糖与甘氨酸反应产物对碳钢的缓蚀效果,采用失重法、电化学法并结合扫描电镜观察,研究了葡萄糖与甘氨酸反应产物(PGG)对碳钢在1 mol/L HCl溶液中的腐蚀抑制作用。结果发现:PGG对碳钢表现出很好的缓蚀效果,缓蚀效率随添加浓度的增加而增加,在最大浓度250 mg/L时,表现出最好的缓蚀效果,缓蚀效率为94.7%,且缓蚀效率随温度升高而降低。PGG同时抑制了碳钢腐蚀的阴极还原反应和阳极氧化反应过程,为混合型缓蚀剂,是通过多组分的物理和化学联合吸附,在碳钢表面上形成保护性覆盖层,将碳钢与酸溶液隔离,从而起到缓蚀作用,其吸附行为遵循Langmuir吸附等温模型。葡萄糖与甘氨酸反应产物(PGG)是碳钢在1 mol/L HCl溶液中的优良缓蚀剂。  相似文献   

19.
《材料科学技术学报》2019,35(10):2243-2253
In this work, a green and effective corrosion inhibitor of functionalized carbon dots (FCDs) was synthesized by the conjugation of imidazole and citric acid carbon dots (CA-CDs). The corrosion inhibition behavior of FCDs for Q235 steel in 1 M HCl solution was systematically investigated by electrochemical analysis, corrosion morphology and adsorption isotherm. The electrochemical results implied that the as-prepared FCDs inhibitor could effectively suppress the corrosion of Q235 steel in 1 M HCl solution. At the same time, the inhibition efficiency of steel in 1 M HCl solution was more than 90% when the inhibitor concentration exceeded 100 mg/L. This excellent property was attributed to the coverage of adsorption film on the steel surface, which conformed to the Langmuir adsorption model. In addition, the analysis of adsorption isotherm displayed that the adsorption mechanism was the physicochemical interaction at the steel/solution interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号