首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
以氢氧化锂、硫酸亚铁铵和磷酸氢二铵为原料,研究了液相共沉淀法制备LiFePO4正极材料和掺杂Co^2+的LiFePO4改性正极材料,并对其进行XRD、SEM分析和电化学性能测试。结果表明掺杂Co^2+对正极材料的初始充电比容量为156.7mAh·g^-1,且循环60次后,容量仍有138.7mAh·g^-1,容量衰减率仅为11.4%。  相似文献   

2.
以氢氧化锂、硫酸亚铁铵和磷酸氢二铵为原料,研究了液相共沉淀法制备LiFePO4正极材料和掺杂Co2+的LiFePO4改性正极材料,并对其进行XRD、SEM分析和电化学性能测试.结果表明掺杂Co2+对正极材料的初始充电比容量为156.7 mAh·g-1,且循环60次后,容量仍有138.7 mAh·g-1,容量衰减率仅为11.4%.  相似文献   

3.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

4.
用固相法合成LiFe1-xYxPO4 (x=0, 0.01, 0.02, 0.03, 0.04)锂离子电池正极材料,采用X射线衍射仪、扫描电子显微镜、粉末比电阻法和充放电性能测试表征材料的晶体结构、微观形貌、电子电导率和电化学性能。结果表明,少量的钇掺杂并未改变材料的晶体结构,但改善了材料的微观结构,提高其电子电导率,改善可逆容量和电化学性能。在10 mA/g的电流密度下,LiFe0.97Y0.03PO4首次放电容量可达146.54 mAh/g。  相似文献   

5.
6.
LiFePO4/C复合正极材料的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用高温固相碳热还原法(CTR,Carbothermal Reduction)合成了LiFePO4/C复合正极材料。采用XRD,SEM以及BET等方法对产物进行表征。结果表明,所得LiFeP04/C材料有着单一的橄榄石型晶体结构。750℃下制备产物的BET比表面积为39.7002m^2/g。利用恒流充放电,循环伏安法(CV),电化学阻抗谱(EIS)等电化学手段研究了LiFePO4/C材料的电化学性质。结果表明:750℃下制备的LiFePO4/C复合材料在25℃工作温度下,有着优异的循环稳定性和大倍率充放电性能,使用850ma/g(5C)的电流密度对电池充放电90次后,电池放电比容量仍能保持11lmAh/g。在55℃工作温度下1C充放电倍率时,首次和第90次循环的放电比容量分别为14513mAh/g和142.9mAh/g。  相似文献   

7.
采用固相法合成橄榄石型LiFePO4锂离子电池正极材料,研究了烧结时间和温度对材料性能的影响,采用XRD、SEM和激光粒度分析等方法对材料的成分、结构和形貌进行了分析.结果表明:在600℃下烧结24h合成的LiFePO4材料具有完整的结晶度、规则的晶体形貌和均匀的粒径(约0.8 μm).  相似文献   

8.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:2,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

9.
LiFePO4/C锂离子电池正极材料的电化学性能   总被引:7,自引:2,他引:7  
以碳凝胶作为碳添加剂,采用固相法制备了复合型LiFePO4/C锂离子电池正极材料.研究了不同掺碳量对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.结果表明:样品中的碳含量(质量分数)分别为0%、5%、10%、22%,所得样品均为单一的橄榄石型晶体结构,碳的加入使LiFePO4颗粒粒径减小.另外,碳分散于晶体颗粒之间,增强了颗粒之间的导电性.合成样品的电化学性能测试结果表明,掺碳后的LiFePO4放电比容量和循环性能都得到显著改善.其中,含碳量为22%的LiFePO4/C在0.1 C倍率下放电,首次放电容量达143.4 mA·h/g,充放电循环6次后电容量为142.7 mA·h/g,容量仅衰减0.7%.  相似文献   

10.
依据电化学原理,提出改进液相共沉淀制备LiFePO_4前驱体的方法.以价廉稳定的Fe~(3+)化合物作铁源,在共沉淀的过程中不需要惰性气体保护,然后在较低温度下(550 ℃)于氮气气氛中焙烧得到橄榄石型LiFePO_4.研究烧结温度对产物性能的影响,550 ℃下烧结得到了电化学性能优良的纯相LiFePO_4.通过改进共沉淀制备掺铜的LiFePO_4正极材料,它具有153.10 mAh·g~(-1)的初始容量(0.1 C),比未掺杂的LiFePO_4提高了11%.经过30次循环后,容量降到140mAh·g~(-1).  相似文献   

11.
利用微乳液法在温和条件下合成Li_2FeSiO_4/C的前驱体,煅烧后得到蠕虫形纳米Li_2FeSiO_4/C正极材料。用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征。通过恒流充放电对材料的电化学性能进行测试。结果表明,采用此法合成的前驱体在700℃煅烧9 h得到的蠕虫形Li_2FeSiO_4/C在室温、1.5~4.8 V的电压范围内,于C/16、C/8和1C倍率下的首次放电容量分别为140.1,139和94.0 mAh/g,循环20次后的容量保有率分别为96.4%,81.2%和73.5%。该样品具有良好的循环稳定性与倍率性能。  相似文献   

12.
介绍了LiFePO4正极材料的结构特点和反应机理,详细讨论了金属离子掺杂、碳包覆和控制活性材料的尺寸等改性研究对LiFePO4材料的电化学性能的影响.从而进一步优化高性能锂离子电池正极材料的改性过程,促进锂离子电池性能的改善.  相似文献   

13.
以Li2CO3,FeSO4·7H2O、(NH4)2HPO4和Na2EDTA为原料,采用水热法合成了锂离子电池正极材料LiFePO4,研究了原料混合液pH值对产物形貌和电化学性能的影响.结果表明,在pH=8下合成的样品属于橄榄石结构,0.1C、3.0~4.3V条件下充放电的首次放电比容量为141mAh·g-1,第20次循环的比容量为138mAh·g-1.  相似文献   

14.
锂离子电池正极材料Li3V2(PO4)3的研究进展   总被引:1,自引:0,他引:1  
Li3V2(PO4)3具有较高的能量密度、更好的电化学性能和热力学稳定性而成为潜在的、最有前途的锂离子电池正极材料。本文对Li3V2(PO4)3研究现状进行了全面介绍,综述了其电化学性能、微观结构、制备方法、改性研究以及其他研究,提出了目前研究中存在的问题,并就Li3V2(PO4)3作为锂离子电池正极材料的研究前景进行了展望。  相似文献   

15.
高电压正极材料LiMnPO4具有无毒、电压高、比容量高、循环性能和安全性能好等优点成为锂离子电池正极材料的研究热点之一,但是较低的电子导电率、本征电导率及较差的倍率性能限制了该材料的实际应用。近几年来,通过增强颗粒间电子导电性、提高颗粒内部的本征电导率和减小颗粒尺寸等,显著提升了LiMnPO4材料的电化学性能。本文介绍了LiMnPO4材料的结构和特点以及近年来国内外的合成和改性方法,包括高温固相法、溶胶-凝胶法、水热法、喷雾干燥法、表面包覆、掺杂和制备纳米尺寸材料等。揭示了目前LiMnPO4的研究现状和存在问题,并对今后的发展前景以及研究的重要方向进行了评述。  相似文献   

16.
锂离子电池正极材料LiNixMn2-xO4的制备和电化学性能研究   总被引:1,自引:0,他引:1  
采用固相反应和湿化学两种方法合成了材料LiNixMn2-xO4含Ni量影响材料在4.7V高电压区间的容量,用固相反应法制备的LiNi0.5Mn1.5O4中含有杂相物质,首次放电容量可以达到118mAh/g,其中高电压区的容量为100mAh/g,循环50次的容量保持率为97%。用湿化学法可以得到纯相的LiNi0.5Mn1.5O4,首次放电容量为140mAh/g,其中高电压区的容量为125mAh/g,循环50次后,容量仍能达到133mAh/g,容量保持率为95%。XPS检测结果表明,湿化学法制备的LiNi0.5Mn1.5O4中Mn为+4价,Ni为+2价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号