共查询到20条相似文献,搜索用时 0 毫秒
1.
Aleksandra Maria Kocot Elbieta Jarocka-Cyrta Natalia Drabiska 《International journal of molecular sciences》2022,23(5)
Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier. 相似文献
2.
Sebastio Mauro B. Duarte Jos Tadeu Stefano Lucas A. M. Franco Roberta C. Martins Bruna D. G. C. Moraes Denise Frediani Barbeiro Nathalia Oliveira Junia Marielle Teixeira Rodrigues Neri Bruno Cogliati Denise Siqueira Vanni Ester C. Sabino Flair J. Carrilho Claudia P. Oliveira 《International journal of molecular sciences》2022,23(18)
Background: Obesity is one of the main health problems in the world today, and dysbiosis seems to be one of the factors involved. The aim of this study was to examine the impact of synbiotic supplementation on obesity and the microbiota in ob/ob mice. Twenty animals were divided into four groups: obese treated (OT), obese control (OC), lean treated (LT) and lean control (LC). All animals received a standard diet for 8 weeks. The treated groups received a synbiotic (Simbioflora-Invictus Farmanutrição Ltd., Sao Paulo, Brazil) in water, while the nontreated groups received only water. After 8 weeks, all animals were sacrificed, and gut tissue and stool samples were collected for mRNA isolation and microbiota analysis, respectively. β-Catenin, occludin, cadherin and zonulin in the gut tissue were analyzed via RT-qPCR. Microbiome DNA was extracted from stool samples and sequenced using an Ion PGM Torrent platform. Results: Synbiotic supplementation reduced body weight gain in the OT group compared with the OC group (p = 0.0398) and was associated with an increase in Enterobacteriaceae (p = 0.005) and a decrease in Cyanobacteria (p = 0.047), Clostridiaceae (p = 0.026), Turicibacterales (p = 0.005) and Coprococcus (p = 0.047). On the other hand, a significant reduction in Sutterella (p = 0.009) and Turicibacter (p = 0.005) bacteria was observed in the LT group compared to the LC group. Alpha and beta diversities were different among all treated groups. β-Catenin gene expression was significantly decreased in the gut tissue of the OT group (p ≤ 0.0001) compared to the other groups. No changes were observed in occludin, cadherin or zonulin gene expression in the gut tissue. Conclusions: Synbiotic supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces β-catenin expression in ob/ob mice. 相似文献
3.
Ashwinipriyadarshini Megur Eric Banan-Mwine Daliri Daiva Baltriukien Aurelijus Burokas 《International journal of molecular sciences》2022,23(11)
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement. 相似文献
4.
Alicia Rodríguez-Pastn Nury Prez-Hernndez Javier Aorve-Morga Rubn Jimnez-Alvarado Raquel Cario-Corts Teresa Sosa-Lozada Eduardo Fernndez-Martínez 《International journal of molecular sciences》2022,23(13)
The components of metabolic syndrome (MetS) and hepatogastrointestinal diseases are widespread worldwide, since many factors associated with lifestyle and diet influence their development and correlation. Due to these growing health problems, it is necessary to search for effective alternatives for prevention or adjuvants in treating them. The positive impact of regulated microbiota on health is known; however, states of dysbiosis are closely related to the development of the conditions mentioned above. Therefore, the role of prebiotics, probiotics, or symbiotic complexes has been extensively evaluated; the results are favorable, showing that they play a crucial role in the regulation of the immune system, the metabolism of carbohydrates and lipids, and the biotransformation of bile acids, as well as the modulation of their central receptors FXR and TGR-5, which also have essential immunomodulatory and metabolic activities. It has also been observed that they can benefit the host by displacing pathogenic species, improving the dysbiosis state in MetS. Current studies have reported that paraprobiotics (dead or inactive probiotics) or postbiotics (metabolites generated by active probiotics) also benefit hepatogastrointestinal health. 相似文献
5.
Omotayo O. Erejuwa Siti A. Sulaiman Mohd S. Ab Wahab 《International journal of molecular sciences》2014,15(3):4158-4188
The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT) disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies) and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed. 相似文献
6.
Akari Nishida Yuna Ando Ikuo Kimura Junki Miyamoto 《International journal of molecular sciences》2022,23(10)
Due to the excess energy intake, which is a result of a high fat and high carbohydrate diet, dysfunction of energy balance leads to metabolic disorders such as obesity and type II diabetes mellitus (T2DM). Since obesity can be a risk factor for various diseases, including T2DM, hypertension, hyperlipidemia, and metabolic syndrome, novel prevention and treatment are expected. Moreover, host diseases linked to metabolic disorders are associated with changes in gut microbiota profile. Gut microbiota is affected by diet, and nutrients are used as substrates by gut microbiota for produced metabolites, such as short-chain and long-chain fatty acids, that may modulate host energy homeostasis. These free fatty acids are not only essential energy sources but also signaling molecules via G-protein coupled receptors (GPCRs). Some GPCRs are critical for metabolic functions, such as hormone secretion and immune function in various types of cells and tissues and contribute to energy homeostasis. The current studies have shown that GPCRs for gut microbial metabolites improved host energy homeostasis and systemic metabolic disorders. Here, we will review the association between diet, gut microbiota, and host energy homeostasis. 相似文献
7.
8.
Ruxandra Florentina Ionescu Robert Mihai Enache Sanda Maria Cretoiu Bogdan Severus Gaspar 《International journal of molecular sciences》2022,23(21)
Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation, which promotes insulin resistance. In the general context of worldwide increasing obesity in young females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal microbiome play a decisive role in obesity and the development of insulin resistance and chronic inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although host metabolism in women with GDM has not been fully elucidated, it is of particular importance to analyze the available data and to discuss the actual knowledge regarding microbiome changes with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed journal articles available in online databases in order to summarize the most recent findings regarding how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was still present postpartum and can impact the development of the newborn, as shown in several studies. In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the postpartum period. The current review aims to summarize and discuss the most recent findings regarding the correlation between GDM and dysbiosis, and current and future methods for prevention and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting the role of the gut microbiota, one can change perspectives about the development and progression of GDM and open up new avenues for the development of innovative therapeutic targets in this disease. 相似文献
9.
Eleni Pavlidou Aristeidis Fasoulas Maria Mantzorou Constantinos Giaginis 《International journal of molecular sciences》2022,23(24)
The ‘gut microbiome’—the hundreds of trillions of bacteria in the human gastrointestinal tract—serves several functions. The gut microbiome includes all the microorganisms, bacteria, viruses, protozoa, and fungi in the gastrointestinal tract and their genetic material. It helps digest indigestible foods and produces nutrients. Through the metabolism of sugars and proteins, it helps the intestinal barrier, the immune system, and metabolism. Some bacteria, such as those in the gut microbiome, cause disease, but others are essential to our health. These “good” microbes protect us from pathogens. Numerous studies have linked an unhealthy gut microbiome to obesity, insulin resistance, depression, and cardiometabolic risk factors. To maximize probiotic benefits in each case, knowledge of probiotic bacterial strains and how to consume them should be increased. This study aims to examine the benefits of probiotic and prebiotic organisms on cardiovascular health, specifically on heart disease, coronary heart disease, stroke, and hypertension. To complete the research, a literature review was conducted by gathering clinical studies and data. The clinical evidence demonstrates the beneficial effect of probiotics and prebiotic microorganisms on the gut microbiome, which has multiple benefits for overall health and especially for cardiovascular diseases. 相似文献
10.
11.
Aneta Sevcikova Nikola Izoldova Viola Stevurkova Barbora Kasperova Michal Chovanec Sona Ciernikova Michal Mego 《International journal of molecular sciences》2022,23(1)
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed. 相似文献
12.
Lidia Snchez-Alcoholado Aurora Laborda-Illanes Ana Otero Rafael Ordez Alicia Gonzlez-Gonzlez Isaac Plaza-Andrades Bruno Ramos-Molina Jaime Gmez-Milln María Isabel Queipo-Ortuo 《International journal of molecular sciences》2021,22(17)
Emerging evidence has suggested that dysbiosis of the gut microbiota may influence the drug efficacy of colorectal cancer (CRC) patients during cancer treatment by modulating drug metabolism and the host immune response. Moreover, gut microbiota can produce metabolites that may influence tumor proliferation and therapy responsiveness. In this study we have investigated the potential contribution of the gut microbiota and microbial-derived metabolites such as short chain fatty acids and polyamines to neoadjuvant radiochemotherapy (RCT) outcome in CRC patients. First, we established a profile for healthy gut microbiota by comparing the microbial diversity and composition between CRC patients and healthy controls. Second, our metagenomic analysis revealed that the gut microbiota composition of CRC patients was relatively stable over treatment time with neoadjuvant RCT. Nevertheless, treated patients who achieved clinical benefits from RTC (responders, R) had significantly higher microbial diversity and richness compared to non-responder patients (NR). Importantly, the fecal microbiota of the R was enriched in butyrate-producing bacteria and had significantly higher levels of acetic, butyric, isobutyric, and hexanoic acids than NR. In addition, NR patients exhibited higher serum levels of spermine and acetyl polyamines (oncometabolites related to CRC) as well as zonulin (gut permeability marker), and their gut microbiota was abundant in pro-inflammatory species. Finally, we identified a baseline consortium of five bacterial species that could potentially predict CRC treatment outcome. Overall, our results suggest that the gut microbiota may have an important role in the response to cancer therapies in CRC patients. 相似文献
13.
Nayla Munawar Aftab Ahmad Munir Ahmad Anwar Khalid Muhammad 《International journal of molecular sciences》2022,23(5)
Schizophrenia (SCZ) is a psychotic syndrome with well-defined signs and symptoms but indecisive causes and effective treatment. Unknown underpinning reasons and no cure of the disease profoundly elevate the risk of illness. Gut microbial dysbiosis related metabolic dysfunction is providing a new angle to look at the potential causes and treatment options for schizophrenia. Because of the number of side effects, including gut dysbiosis, of traditional antipsychotic drugs, new alternative therapeutic options are under consideration. We propose that non-pharmacotherapy using biotherapeutic products could be a potent treatment to improve cognitive impairment and other symptoms of schizophrenia. Use of live microorganisms (probiotics), fibers (prebiotics), and polyphenols alone or in a mixture can maintain gut microbial diversity and improve the two-way relationship of the gut microbiota and the central nervous system. Fiber and polyphenol induced management of gut microbiota may positively influence the gut–brain axis by increasing the level of brain-derived neurotrophic factors involved in schizophrenia. Furthermore, we endorse the need for comprehensive clinical assessment and follow-up of psychobiotic (pro and prebiotics) treatment in mental illness to estimate the level of target recovery and disability reduction in schizophrenia. 相似文献
14.
Tereza Kubasova Zuzana Seidlerova Ivan Rychlik 《International journal of molecular sciences》2021,22(11)
In this review, we link ecological adaptations of different gut microbiota members with their potential for use as a new generation of probiotics. Gut microbiota members differ in their adaptations to survival in aerobic environments. Interestingly, there is an inverse relationship between aerobic survival and abundance or potential for prolonged colonization of the intestinal tract. Facultative anaerobes, aerotolerant Lactobacilli and endospore-forming Firmicutes exhibit high fluctuation, and if such bacteria are to be used as probiotics, they must be continuously administered to mimic their permanent supply from the environment. On the other hand, species not expressing any form of aerobic resistance, such as those from phylum Bacteroidetes, commonly represent host-adapted microbiota members characterized by vertical transmission from mothers to offspring, capable of long-term colonization following a single dose administration. To achieve maximal probiotic efficacy, the mode of their administration should thus reflect their natural ecology. 相似文献
15.
Mauritz F. Herselman Sheree Bailey Larisa Bobrovskaya 《International journal of molecular sciences》2022,23(4)
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology. 相似文献
16.
Thomas M. Barber Georgios Valsamakis George Mastorakos Petra Hanson Ioannis Kyrou Harpal S. Randeva Martin O. Weickert 《International journal of molecular sciences》2021,22(7)
Over unimaginable expanses of evolutionary time, our gut microbiota have co-evolved with us, creating a symbiotic relationship in which each is utterly dependent upon the other. Far from confined to the recesses of the alimentary tract, our gut microbiota engage in complex and bi-directional communication with their host, which have far-reaching implications for overall health, wellbeing and normal physiological functioning. Amongst such communication streams, the microbiota–gut–brain axis predominates. Numerous complex mechanisms involve direct effects of the microbiota, or indirect effects through the release and absorption of the metabolic by-products of the gut microbiota. Proposed mechanisms implicate mitochondrial function, the hypothalamus–pituitary–adrenal axis, and autonomic, neuro-humeral, entero-endocrine and immunomodulatory pathways. Furthermore, dietary composition influences the relative abundance of gut microbiota species. Recent human-based data reveal that dietary effects on the gut microbiota can occur rapidly, and that our gut microbiota reflect our diet at any given time, although much inter-individual variation pertains. Although most studies on the effects of dietary macronutrients on the gut microbiota report on associations with relative changes in the abundance of particular species of bacteria, in broad terms, our modern-day animal-based Westernized diets are relatively high in fats and proteins and impoverished in fibres. This creates a perfect storm within the gut in which dysbiosis promotes localized inflammation, enhanced gut wall permeability, increased production of lipopolysaccharides, chronic endotoxemia and a resultant low-grade systemic inflammatory milieu, a harbinger of metabolic dysfunction and many modern-day chronic illnesses. Research should further focus on the colony effects of the gut microbiota on health and wellbeing, and dysbiotic effects on pathogenic pathways. Finally, we should revise our view of the gut microbiota from that of a seething mass of microbes to one of organ-status, on which our health and wellbeing utterly depends. Future guidelines on lifestyle strategies for wellbeing should integrate advice on the optimal establishment and maintenance of a healthy gut microbiota through dietary and other means. Although we are what we eat, perhaps more importantly, we are what our gut microbiota thrive on and they thrive on what we eat. 相似文献
17.
Antonio Tursi Valerio Papa Loris Riccardo Lopetuso Carlo Romano Settanni Antonio Gasbarrini Alfredo Papa 《International journal of molecular sciences》2022,23(23)
Gut microbiota (GM) composition and its imbalance are crucial in the pathogenesis of several diseases, mainly those affecting the gastrointestinal tract. Colon diverticulosis and its clinical manifestations (diverticular disease, DD) are among the most common digestive disorders in developed countries. In recent literature, the role of GM imbalance in the onset of the different manifestations within the clinical spectrum of DD has been highlighted. This narrative review aims to summarize and critically analyze the current knowledge on GM dysbiosis in diverticulosis and DD by comparing the available data with those found in inflammatory bowel disease (IBD). The rationale for using probiotics to rebalance dysbiosis in DD is also discussed. 相似文献
18.
Parkinson’s disease (PD), the second most common neurodegenerative disorder worldwide, is characterized by dopaminergic neuron degeneration and α-synuclein aggregation in the substantia nigra pars compacta of the midbrain. Emerging evidence has shown that dietary intake affects the microbial composition in the gut, which in turn contributes to, or protects against, the degeneration of dopaminergic neurons in affected regions of the brain. More specifically, the Mediterranean diet and Western diet, composed of varying amounts of proteins, carbohydrates, and fats, exert contrasting effects on PD pathophysiology via alterations in the gut microbiota and dopamine levels. Interestingly, the negative changes in the gut microbiota of patients with PD parallel changes that are seen in individuals that consume a Western diet, and are opposite to those that adhere to a Mediterranean diet. In this review, we first examine the role of prominent food groups on dopamine bioavailability, how they modulate the composition and function of the gut microbiota and the subsequent effects on PD and obesity pathophysiology. We then highlight evidence on how microbiota transplant and weight loss surgery can be used as therapeutic tools to restore dopaminergic deficits through optimizing gut microbial composition. In the process, we revisit dietary metabolites and their role in therapeutic approaches involving dopaminergic pathways. Overall, understanding the role of nutrition on dopamine bioavailability and gut microbiota in dopamine-related pathologies such as PD will help develop more precise therapeutic targets to rescue dopaminergic deficits in neurologic and metabolic disorders. 相似文献
19.
Xiaozhou Zeng Zhihong Liu Yanxi Dong Jiamin Zhao Bin Wang Huiwen Xiao Yuan Li Zhiyuan Chen Xiaojing Liu Jia Liu Jiali Dong Saijun Fan Ming Cui 《International journal of molecular sciences》2022,23(21)
Social hierarchy governs the physiological and biochemical behaviors of animals. Intestinal radiation injuries are common complications connected with radiotherapy. However, it remains unclear whether social hierarchy impacts the development of radiation-induced intestinal toxicity. Dominant mice exhibited more serious intestinal toxicity following total abdominal irradiation compared with their subordinate counterparts, as judged by higher inflammatory status and lower epithelial integrity. Radiation-elicited changes in gut microbiota varied between dominant and subordinate mice, being more overt in mice of higher status. Deletion of gut microbes by using an antibiotic cocktail or restructuring of the gut microecology of dominant mice by using fecal microbiome from their subordinate companions erased the difference in radiogenic intestinal injuries. Lactobacillus murinus and Akkermansia muciniphila were both found to be potential probiotics for use against radiation toxicity in mouse models without social hierarchy. However, only Akkermansia muciniphila showed stable colonization in the digestive tracts of dominant mice, and significantly mitigated their intestinal radiation injuries. Our findings demonstrate that social hierarchy impacts the development of radiation-induced intestinal injuries, in a manner dependent on gut microbiota. The results also suggest that the gut microhabitats of hosts determine the colonization and efficacy of foreign probiotics. Thus, screening suitable microbial preparations based on the gut microecology of patients might be necessary in clinical application. 相似文献
20.
The intestinal barrier plays an extremely important role in maintaining the immune homeostasis of the gut and the entire body. It is made up of an intricate system of cells, mucus and intestinal microbiota. A complex system of proteins allows the selective permeability of elements that are safe and necessary for the proper nutrition of the body. Disturbances in the tightness of this barrier result in the penetration of toxins and other harmful antigens into the system. Such events lead to various digestive tract dysfunctions, systemic infections, food intolerances and autoimmune diseases. Pathogenic and probiotic bacteria, and the compounds they secrete, undoubtedly affect the properties of the intestinal barrier. The discovery of zonulin, a protein with tight junction regulatory activity in the epithelia, sheds new light on the understanding of the role of the gut barrier in promoting health, as well as the formation of diseases. Coincidentally, there is an increasing number of reports on treatment methods that target gut microbiota, which suggests that the prevention of gut-barrier defects may be a viable approach for improving the condition of COVID-19 patients. Various bacteria–intestinal barrier interactions are the subject of this review, aiming to show the current state of knowledge on this topic and its potential therapeutic applications. 相似文献