首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic alterations affect the onset of ischemic stroke, brain injury after stroke, and mechanisms of poststroke recovery. In particular, DNA methylation can be dynamically altered by maintaining normal brain function or inducing abnormal brain damage. DNA methylation is regulated by DNA methyltransferase (DNMT), which promotes methylation, DNA demethylase, which removes methyl groups, and methyl-cytosine–phosphate–guanine-binding domain (MBD) protein, which binds methylated DNA and inhibits gene expression. Investigating the effects of modulating DNMT, TET, and MBD protein expression on neuronal cell death and neurorepair in ischemic stroke and elucidating the underlying mechanisms can facilitate the formulation of therapeutic strategies for neuroprotection and promotion of neuronal recovery after stroke. In this review, we summarize the role of DNA methylation in neuroprotection and neuronal recovery after stroke according to the current knowledge regarding the effects of DNA methylation on excitotoxicity, oxidative stress, apoptosis, neuroinflammation, and recovery after ischemic stroke. This review of the literature regarding the role of DNA methylation in neuroprotection and functional recovery after stroke may contribute to the development and application of novel therapeutic strategies for stroke.  相似文献   

2.
The intestinal microbiome, the largest reservoir of microorganisms in the human body, plays an important role in neurological development and aging as well as in brain disorders such as an ischemic stroke. Increasing knowledge about mediators and triggered pathways has contributed to a better understanding of the interaction between the gut-brain axis and the brain-gut axis. Intestinal bacteria produce neuroactive compounds and can modulate neuronal function, which affects behavior after an ischemic stroke. In addition, intestinal microorganisms affect host metabolism and immune status, which in turn affects the neuronal network in the ischemic brain. Here we discuss the latest results of animal and human research on two-way communication along the gut-brain axis in an ischemic stroke. Moreover, several reports have revealed the impact of an ischemic stroke on gut dysfunction and intestinal dysbiosis, highlighting the delicate play between the brain, intestines and microbiome after this acute brain injury. Despite our growing knowledge of intestinal microflora in shaping brain health, host metabolism, the immune system and disease progression, its therapeutic options in an ischemic stroke have not yet been fully utilized. This review shows the role of the gut microflora-brain axis in an ischemic stroke and assesses the potential role of intestinal microflora in the onset, progression and recovery post-stroke.  相似文献   

3.
Neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3), NT-4, and NT-5, are proteins involved in several important functions of the central nervous system. The activation of the signaling pathways of these neurotrophins, or even by their immature form, pro-neurotrophins, starts with their recognition by cellular receptors, such as tropomyosin receptor kinase (Trk) and 75 kD NT receptors (p75NTR). The Trk receptor is considered to have a high affinity for attachment to specific neurotrophins, while the p75NTR receptor has less affinity for attachment with neurotrophins. The correct functioning of these signaling pathways contributes to proper brain development, neuronal survival, and synaptic plasticity. Unbalanced levels of neurotrophins and pro-neurotrophins have been associated with neurological disorders, illustrating the importance of these molecules in the central nervous system. Furthermore, reports have indicated that viruses can alter the normal levels of neurotrophins by interfering with their signaling pathways. This work discusses the importance of neurotrophins in the central nervous system, their signaling pathways, and how viruses can affect them.  相似文献   

4.
Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people who have diabetes, the disease mentioned above constitutes together with stroke a severe social and economic burden. In diabetic patients after an ischemic stroke, an exorbitant activation of inflammatory molecular pathways and ongoing inflammation is responsible for more severe brain injury and impairment, promoting the advancement of ischemic stroke and diabetes. Considering that the ominous prognosis of ischemic brain damage could by partially clarified by way of already known risk factors the auspice would be modifying poor outcome in the post-stroke phase detecting novel biomolecules associated with poor prognosis and targeting them for revolutionary therapeutic strategies.  相似文献   

5.
6.
Traumatic brain injury (TBI) remains the leading cause of long-term disability, which annually involves millions of individuals. Several studies on mammals reported that neurotrophins could play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and TBI. This protective role of neurotrophins after an event of TBI has also been reported in the zebrafish model. Nevertheless, reparative mechanisms in mammalian brain are limited, and newly formed neurons do not survive for a long time. In contrast, the brain of adult fish has high regenerative properties after brain injury. The evident differences in regenerative properties between mammalian and fish brain have been ascribed to remarkable different adult neurogenesis processes. However, it is not clear if the specific role and time point contribution of each neurotrophin and receptor after TBI is conserved during vertebrate evolution. Therefore, in this review, I reported the specific role and time point of intervention for each neurotrophic factor and receptor after an event of TBI in zebrafish and mammals.  相似文献   

7.
Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.  相似文献   

8.
9.
10.
Brain ischemia and reperfusion (I/R) is one of the most severe clinical manifestations of ischemic stroke, placing a significant burden on both individuals and society. The only FDA-approved clinical treatment for ischemic stroke is tissue plasminogen activator (t-PA), which rapidly restores cerebral blood flow but can have severe side effects. The complex pathological process of brain I/R has been well-established in the past few years, including energy metabolism disorders, cellular acidosis, doubling of the synthesis or release of excitotoxic amino acids, intracellular calcium homeostasis, free radical production, and activation of apoptotic genes. Recently, accumulating evidence has shown that NO may be strongly related to brain I/R and involved in complex pathological processes. This review focuses on the role of endogenous NO in pathological processes in brain I/R, including neuronal cell death and blood brain barrier disruption, to explore how NO impacts specific signaling cascades and contributes to brain I/R injury. Moreover, NO can rapidly react with superoxide to produce peroxynitrite, which may also mediate brain I/R injury, which is discussed here. Finally, we reveal several therapeutic approaches strongly associated with NO and discuss their potential as a clinical treatment for ischemic stroke.  相似文献   

11.
L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson’s disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.  相似文献   

12.
Epigenetic changes in stroke may revolutionize cell-based therapies aimed at reducing ischemic stroke risk and damage. Epigenetic changes are a novel therapeutic target due to their specificity and potential for reversal. Possible targets for epigenetic modification include DNA methylation and demethylation, post-translational histone modification, and the actions of non-coding RNAs such as microRNAs. Many of these epigenetic modifications have been reported to modulate atherosclerosis development and progression, ultimately contributing to stroke pathogenesis. Furthermore, epigenetics may play a major role in inflammatory responses following stroke. Stem cells for stroke have demonstrated safety in clinical trials for stroke and show therapeutic benefit in pre-clinical studies. The efficacy of these cell-based interventions may be amplified with adjunctive epigenetic modifications. This review advances the role of epigenetics in atherosclerosis and inflammation in the context of stroke, followed by a discussion on current stem cell studies modulating epigenetics to ameliorate stroke damage.  相似文献   

13.
Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.  相似文献   

14.
Stroke is a serious worldwide disease that causes death and disability, more than 80% of which is ischemic stroke. The expression of arginase 1 (Arg1), a key player in regulating nitrogen homeostasis, is altered in the peripheral circulation after stroke. Growing evidence indicates that ischemic stroke also induces upregulated Arg1 expression in the central nervous system, especially in activated microglia and macrophages. This implies that Arg1 may affect stroke progression by modulating the cerebral immune response. To investigate the effect of Arg1+ microglia/macrophages on ischemic stroke, we selectively eliminated cerebral Arg1+ microglia/macrophages by mannosylated clodronate liposomes (MCLs) and investigated their effects on behavior, neurological deficits, and inflammatory responses in mice after ischemic stroke. More than half of Arg1+ cells, mainly Arg1+ microglia/macrophages, were depleted after MCLs administration, resulting in a significant deterioration of motility in mice. After the elimination of Arg1+ microglia/macrophages, the infarct volume expanded and neuronal degenerative lesions intensified. Meanwhile, the absence of Arg1+ microglia/macrophages significantly increased the production of pro-inflammatory cytokines and suppressed the expression of anti-inflammatory factors, thus profoundly altering the immune microenvironment at the lesion site. Taken together, our data demonstrate that depletion of Arg1+ microglia/macrophages exacerbates neuronal damage by facilitating the inflammatory response, leading to more severe ischemic injury. These results suggest that Arg1+ microglia/macrophages, as a subpopulation regulating inflammation, is beneficial in controlling the development of ischemia and promoting recovery from injury. Regulation of Arg1 expression on microglia/macrophages at the right time may be a potential target for the treatment of ischemic brain injury.  相似文献   

15.
The translation of neuroprotective agents for ischemic stroke from bench-to-bedside has largely failed to produce improved treatments since the development of tissue plasminogen activator (tPA). One possible reason for lack of translation is the failure to acknowledge the greatest risk factor for stroke, age, and other common comorbidities such as hypertension, obesity, and diabetes that are associated with stroke. In this review, we highlight both mechanisms of studying these factors and results of those that have been addressed. We also discuss the potential role of other lifestyle factors associated with an increased stroke risk such as sleep fragmentation and/or deprivation. Furthermore, many proposed therapeutic agents have targeted molecular mechanisms occurring soon after the onset of ischemia despite data indicating delayed patient presentation following ischemic stroke. Modulating inflammation has been identified as a promising therapeutic avenue consistent with preliminary success of ongoing clinical trials for anti-inflammatory compounds such as minocycline. We review the role of inflammation in stroke and in particular, the role of inflammatory cell recruitment and macrophage phenotype in the inflammatory process. Emerging evidence indicates an increasing role of neuro-immune crosstalk, which has led to increased interest in identification of peripheral biomarkers indicative of neural injury. It is our hope that identification and investigation of factors influencing stroke pathophysiology may lead to improved therapeutics.  相似文献   

16.
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.  相似文献   

17.
Acute ischemic stroke is the leading cause of morbidity and mortality worldwide. Recombinant tissue plasminogen activator (rtPA) is the only agent clinically approved by FDA for patients with acute ischemic stroke. However, delayed treatment of rtPA (e.g., more than 3 h after stroke onset) exacerbates ischemic brain damage by causing intracerebral hemorrhage and increasing neurotoxicity. In the present study, we investigated whether the neuroprotant otaplimastat reduced delayed rtPA treatment-evoked neurotoxicity in male Sprague Dawley rats subjected to embolic middle cerebral artery occlusion (eMCAO). Otaplimastat reduced cerebral infarct size and edema and improved neurobehavioral deficits. In particular, otaplimastat markedly reduced intracerebral hemorrhagic transformation and mortality triggered by delayed rtPA treatment, consequently extending the therapeutic time window of rtPA. We further found that ischemia-evoked extracellular matrix metalloproteases (MMPs) expression was closely correlated with cerebral hemorrhagic transformation and brain damage. In ischemic conditions, delayed rtPA treatment further increased brain injury via synergistic expression of MMPs in vascular endothelial cells. In oxygen-glucose-deprived endothelial cells, otaplimastat suppressed the activity rather than protein expression of MMPs by restoring the level of tissue inhibitor of metalloproteinase (TIMP) suppressed in ischemia, and consequently reduced vascular permeation. This paper shows that otaplimastat under clinical trials is a new drug which can inhibit stroke on its own and extend the therapeutic time window of rtPA, especially when administered in combination with rtPA.  相似文献   

18.
Edaravone was originally developed as a potent free radical scavenger, and has been widely used to treat acute ischemic stroke in Japan since 2001. Free radicals play an important role in the pathogenesis of a variety of diseases, such as cardiovascular diseases and stroke. Therefore, free radicals may be targets for therapeutic intervention in these diseases. Edaravone shows protective effects on ischemic insults and inflammation in the heart, vessel, and brain in experimental studies. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic, and anti-cytokine effects in cardiovascular diseases and stroke. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion in patients with acute myocardial infarction. Edaravone may represent a new therapeutic intervention for endothelial dysfunction in the setting of atherosclerosis, heart failure, diabetes, or hypertension, because these diseases result from oxidative stress and/or cytokine-induced apoptosis. This review evaluates the potential of edaravone for treatment of cardiovascular disease, and covers clinical and experimental studies conducted between 1984 and 2013. We propose that edaravone, which scavenges free radicals, may offer a novel option for treatment of cardiovascular diseases. However, additional clinical studies are necessary to verify the efficacy of edaravone.  相似文献   

19.
Promoting oligodendrocyte viability has been proposed as a therapeutic strategy for alleviating many neuronal diseases, such as multiple sclerosis and stroke. However, molecular pathways critical for oligodendrocyte survival under various stresses are still not well known. p53 is a strong tumor suppressor and regulates cell cycle, DNA repair and cell death. Our previous studies have shown that p53 plays an important role in promoting neuronal survival after insults, but its specific role in oligodendrocyte survival is not known. Here, we constructed the mice with oligodendrocyte-specific p53 loss by crossing TRP53flox/flox mice and CNP-cre mice, and found that p53 was dispensable for oligodendrocyte differentiation and myelin formation under physiological condition. In the experimental autoimmune encephalomyelitis (EAE) model, p53 loss of function, specifically in oligodendrocytes, did not affect the EAE disease severity and had no effect on demyelination in the spinal cord of the mice. Interestingly, p53 deficiency in oligodendrocytes significantly attenuated the demyelination of corpus callosum and alleviated the functional impairment of motor coordination and spatial memory in the cuprizone demyelination model. Moreover, the oligodendrocyte-specific loss of p53 provided protection against subcortical white matter damage and mitigated recognition memory impairment in mice in the white matter stroke model. These results suggest that p53 plays different roles in the brain and spinal cord or in response to various stresses. Thus, p53 may be a therapeutic target for oligodendrocyte prevention in specific brain injuries, such as white matter stroke and multiple sclerosis.  相似文献   

20.
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号