首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用光学显微镜和力学性能测试设备研究了不同正火工艺对S275NL高韧性风电用钢组织和性能的影响。试验结果表明,随着正火温度的提高,钢板强度有所降低,伸长率和Z向性能逐步提高,低温冲击韧性得到改善;正火保温时间对力学性能的影响不显著。适宜的正火加热温度为900℃,保温时间175 min,该工艺处理后,钢板组织为细小均匀的铁素体和珠光体,钢板强度富余量合理,强韧性匹配和综合力学性能良好。  相似文献   

2.
采用光学显微镜和力学性能测试设备研究了不同正火工艺对S275NL高韧性风电用钢组织和性能的影响。试验结果表明,随着正火温度的提高,钢板强度有所降低,伸长率和Z向性能逐步提高,低温冲击韧性得到改善;正火保温时间对力学性能的影响不显著。  相似文献   

3.
对300 mm S355J2+N欧标结构钢进行了不同温度的正火试验,观察其显微组织并分析了不同条件下钢板的力学性能,结果表明:880℃正火,可以得到更好的低温韧性,随着保温时间的延长,钢板组织晶粒越大。  相似文献   

4.
王克柱 《宽厚板》2012,18(6):12-15
采用光学显微镜和力学性能测试设备研究了不同正火工艺对FH36级高强度船体用结构钢板组织和性能的影响。试验结果表明,随着正火温度的提高,钢板强度有所降低,伸长率逐步提高,低温冲击韧性得到改善;随着正火时间的延长,钢板强度、伸长率、低温冲击韧性先升高后降低。  相似文献   

5.
针对厚度为100 mm的核电用钢板20MnHR-B进行不同工艺热处理和力学性能、显微组织检测分析,结果表明:经过正火+回火处理,钢板的力学性能满足交货状态、最大和最小模拟焊后热处理状态的技术要求;经过最大模拟焊后热处理,钢板获得铁素体+珠光体+少量粒状贝氏体组织。最终将100 mm厚度核电用钢板20MnHR-B的最佳热处理工艺确定为900℃正火+保温1.2 min/mm+水冷、630℃回火+保温2 min/mm+空冷。  相似文献   

6.
采用光学显微镜研究了不同正火温度及保温时间对65 mm厚Q345E显微组织的影响。结果表明:与控轧控冷(TMCP)态钢板相比,经900℃正火的钢,其晶粒细小,全断面组织最均匀。随着保温时间的延长,铁素体晶粒长大不明显,但珠光体含量减少,有球化趋势。  相似文献   

7.
研究了正火热处理工艺对SA-537CL1试验钢带状组织和力学性能的影响,分析了带状组织形成的原因,提出了SA-537CL1试验钢的最佳热处理工艺。试验结果表明:带状组织由连铸坯的成分偏析导致,为一次带状组织,常规的正火热处理难以根除,只能有所改善。与热轧态相比,正火热处理后,铁素体与珠光体分布更加均匀,心部带状组织明显减轻。随着正火温度的升高和保温时间的延长,带状组织变化不明显,屈服强度和抗拉强度有所降低但差别不大,冲击韧性却有明显差异;正火温度为870℃、保温时间为10~40 min时,力学性能可满足客户技术要求。  相似文献   

8.
探讨了不同热处理工艺对12Cr2Mo1R耐热钢板性能和组织的影响,结果表明:随正火温度的升高贝氏体增加,强度提高,975℃正火后,显微组织为100%贝氏体和(Fe,Cr)3C型渗碳体;随回火温度的提高及回火时间的延长,强度降低,600℃回火时析出的纳米强化相不断长大成针状,同时,(Fe,Cr)3C型渗碳体不断球化,逐渐向(Fe,Cr)7C3型转化;正火处理后再经650℃回火处理,负蠕变现象消失。生产中12Cr2Mo1R钢宜采用正火+回火处理,正火温度920~950℃,保温时间1.5~3.0 min/mm;回火温度720~750℃,保温时间2.0~4.0 min/mm。  相似文献   

9.
为提高抗大变形管线钢X80的力学性能,在鞍钢5500宽厚板生产线上对其轧制工艺进行了研究。结果表明,提高板坯加热温度及保温时间可改善产品抗拉强度;适当调整弛豫时间,保证钢板入水温度及优化轧制力、轧制道次,可有效控制钢板显微组织,提高产品的均匀延伸率。  相似文献   

10.
为提高抗大变形管线钢X80的力学性能,在鞍钢5500宽厚板生产线上对其轧制工艺进行了研究。结果表明,提高板坯加热温度及保温时间可改善产品抗拉强度;适当调整弛豫时间,保证钢板入水温度及优化轧制力、轧制道次,可有效控制钢板显微组织,提高产品的均匀延伸率。  相似文献   

11.
采用力学性能测试、金相分析及TEM微观结构分析,研究了淬火温度及保温时间对低合金耐磨钢显微组织和力学性能的影响,并通过端淬试验研究了奥氏体化温度对淬透性的影响.结果表明:在830~910℃温度范围内,淬透性随奥氏体化温度升高而提高,当奥氏体化温度超过910℃时,钢板淬透性降低.850℃保温30~45 min的亚温淬火组织中,存在尺寸为1μm左右的高缺陷铁素体弥散分布,使钢板韧性得到提高;910℃保温45~60 min完全淬火后,钢板具有良好的强韧性;奥氏体温度超过930℃以及延长保温时间都会使原始奥氏体晶粒粗化,导致钢板韧性降低.  相似文献   

12.
正火后采取控制冷却是提高正火钢板力学性能的重要手段。从中厚板正火后的控制冷却装置的设备构成和功能角度,详细说明了控制冷却系统在满足控制冷却的速度控制、板形控制上的设备设计特点。正火控制冷却系统达到了6~80mm钢板的冷却速度范围在2—20℃/s,冷却后钢板板形平直,30mm以上厚度钢板的性能合格率达到98%以上。该生产设备运行经济、可靠。  相似文献   

13.
分析模拟焊后热处理工艺对压力容器用高性能13MnNiMoR钢板组织和性能的影响,结果表明:钢板经模拟焊后热处理,抗拉强度降低,Z向性能改善;温度相同,随着保温时间的延长,抗拉强度降低且趋稳,延伸率逐渐降低;时间相同,随着保温温度的升高,屈服强度和Z向值降低;随着温度提高或保温时间延长,晶粒尺寸增大并趋向均匀。试板经过模拟焊后热处理,钢板力学性能满足标准要求。  相似文献   

14.
采用不同的正火工艺对热轧A537CL.1试样进行系列热处理试验,利用常温拉伸试验机、摆锤式冲击试验机、金相显微镜研究热处理工艺对试验钢组织性能的影响,结果表明:热轧钢板正火后强度降低,钢板出炉后风冷与空冷相比,风冷钢板强度略有提高,但冲击值降低;在880℃保温、保温时间36 min的正火工艺条件下,试验钢综合性能优良,满足LPG低温储罐用钢的要求.  相似文献   

15.
李筱  卫英慧  卫争艳  苏莹 《特殊钢》2019,40(2):63-66
研究了不同退火温度和保温时间对SUS410L热轧态钢板再结晶行为和力学性能的影响。试验结果表明,当保温温度为700℃时,保温480 min后SUS410L热轧钢板仍未完成再结晶。当保温温度为750℃和800℃时分别于120 min和30 min基本完成再结晶,晶粒在之后的保温时间里逐步长大。为避免退火过程中出现马氏体而降低材料的延伸率,退火温度≤800℃。材料的力学性能与热处理后的再结晶程度密切相关。当保温温度为750℃且保温时间为480 min时可获得最佳的综合机械性能:延伸率38%,HRB硬度值67,屈服强度236 MPa,抗拉强度441 MPa。  相似文献   

16.
研究了系列正火热处理工艺对A573Gr.70钢带状组织和力学性能的影响,分析了带状组织形成原因,提出了A573Gr.70钢的最佳热处理工艺制度。试验结果表明,随着正火温度的升高,带状组织等级逐渐降低,力学性能得到改善。当正火温度达到940°C时,带状组织基本消除,钢板的强韧性匹配达到最佳状态。  相似文献   

17.
对低碳Q345qNHE钢进行不同的工艺处理,利用常温拉伸试验机、摆锤式冲击试验机、金相显微镜研究不同试验方法对试验钢性能与组织的影响,结果表明:热轧钢板正火后强度降低,随正火保温温度升高韧性变差。因此低碳Q345qNHE钢可采用热轧或适当提锰后,正火状态均能满足钢板的使用要求。  相似文献   

18.
为了确定AP1000技术反应堆安全壳用40 mm厚度规格SA-738Gr.B钢板热处理工艺,研究了不同淬火保温时间和回火保温时间对钢板组织和力学性能的影响。试验结果表明,延长淬火保温时间至180 min,钢板可以得到更均匀化的显微组织,并得到更高的强度;在相同的淬火保温时间下,延长回火保温时间至185 min,对钢板的力学性能影响不大。  相似文献   

19.
《宽厚板》2017,(5)
结合唐山中厚板材有限公司辐射管式正火热处理炉技术升级改造,采用C-Mn-Nb-Ti成分设计,分别以860℃、890℃、920℃温度以及1.3 min/mm、1.9 min/mm和2.5 min/mm的加热系数对100 mm厚度Q345E钢板进行正火处理。结果表明:经过890℃温度、1.9 min/mm加热系数正火处理,钢板的带状组织得到有效改善,且综合力学性能优良。  相似文献   

20.
针对压力容器用Q345R钢板在正火和正火轧制两种工艺条件下的微观组织和力学性能进行对比研究,结果表明:正火轧制工艺生产钢板可以获得与正火工艺生产钢板相近似的性能,满足相关标准要求。两种工艺生产的钢板经再次正火后抗拉强度略微降低,但冲击韧性均得到改善。可采用正火轧制代替轧后正火的方式生产Q345R钢板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号