首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS), an organic monomer [methylmethacrylate (MMA) or styrene (St)] and either α‐propylmethacryloxy‐ω‐trimethylsiloxy‐oligo(dimethylsiloxane) (OMS), as a compatibilizing agent, or α,ω‐bis(vinyl) oligo(dimethylsiloxane) (OVS), as compatibilizing and crosslinking agent, were allowed to undergo a sol–gel reaction under acidic condition and in the presence of 2,2′‐azoisobutyronitrile (AIBN) as a free‐radical initiator. The hydrolysis‐condensation and in situ free‐radical polymerization occur independently, to give a hybrid consisting of both inorganic and organic components. The conversion of the monomers to the proper polymers was monitored by IR spectroscopy and TGA. The resistance of the organic polymers to solvent extraction was also studied. The hybrids were pyrolyzed in an oxidative atmosphere. By decomposition, the organic polymer generated pores in the inorganic matrix. A quantitative evaluation of the characteristics for the resulting porous material was made by determination of the specific area, pore volume, and average radius. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2060–2067, 2003  相似文献   

2.
The production of carbon nanofibers by the pyrolysis of sphagnum moss as a result of mechanochemical activation in a planetary mill is considered. The nanofibers are used to create a composite system consisting of carbon and tungsten nanoparticles, which may provide the basis for anodes in secondary power sources and may also be used in the mechanochemical synthesis and microalloying of refractory compounds.  相似文献   

3.
The latest data concerning the modification of polymers containing phenylquinoxaline cycles and the manufacture of polymer materials on their basis are systematized. It has been shown that the design of silicon-and fluorine-containing and sulfated poly(phenylquinoxalines) makes it possible to significantly improve the processability of polymers and the performance characteristics of the related materials.  相似文献   

4.
4种炭素材料的抗氧化性研究   总被引:1,自引:0,他引:1  
采用SEM、Raman光谱和TG-Dsc等手段研究了纳米碳管、天然石墨、酚醛树脂热解炭、炭黑改性酚醛树脂热解炭的抗氧化性.研究表明,这4种炭素材料的抗氧化性由强到弱的顺序为天然石墨、纳米碳管、炭黑改性酚醛树脂热解炭、酚醛树脂热解炭.  相似文献   

5.
Bamboo-shaped carbon nanofibers were obtained in pyrolytic carbon fabricated by thermal gradient chemical vapor deposition and their micro-and nanostructure were examined by transmission and scanning electron microscopy. The results showed that, bamboo-shaped nanofibers with diameters from a few tens to about 250 nm were distributed homogeneously in the pyrolytic carbon. The nanofibers could be pulled out of the pyrolytic carbon when they were fractured.  相似文献   

6.
The effects of the functionalization of carbon nanofibers (CNFs) on their electronic conductivity, in addition to their physico-chemical properties have been studied. Oxygen surface groups have been created on the surface of three CNFs with different properties, following three oxidation treatments with diverse severity. The oxygen content increased from two to six times the original content, depending on the CNF texture, from 1.5–2.6 wt.% up to 15.1 wt.%. Whereas some important properties are not significantly modified after functionalization (texture, crystalline structure, etc.), other properties like the electronic conductivity are affected depending on the extent of the process. The electronic conductivity of CNFs decreases from 200–350 S m−1 up to 20–100 S m−1 (the precise value depends on carbon crystallinity and compaction degree) when surface oxygen content increases from 1.5 wt.% to 5 wt.%. A further oxidation degree leads to a 90% decrease in conductivity, and in the end can even destroy the original fibrous structure. As a first approach, oxidizing at room temperature with rather strong acid solutions is a better strategy to create functional groups and maintain the electronic conductivity than increasing the process temperature with less severe oxidizing agents.  相似文献   

7.
We demonstrate a very efficient synthesis of vertically-aligned ultra-long carbon nanofibers (CNFs) with sharp tip ends using thermal chemical vapor deposition. Millimeter-scale CNFs with a diameter of less than 50 nm are readily grown on palladium thin film deposited Al2O3 substrate, which activate the conical stacking of graphitic platelets. The field emission performance of the as-grown CNFs is better than that of previous CNFs due to their extremely high aspect ratio and sharp tip angle. The CNF array gives the turn-on electric field of 0.9 V/μm, the maximum emission current density of 6.3 mA/cm2 at 2 V/μm, and the field enhancement factor of 2585.  相似文献   

8.
纳米碳纤维的微观结构调控与催化作用   总被引:2,自引:1,他引:1       下载免费PDF全文
纳米碳纤维(CNF)是一种新型一维结构纳米炭材料,因其具有许多独特的性质而备受研究者关注。按照CNF基本结构单元石墨片层与生长轴的夹角不同,可以将CNF分为板式、鱼骨式和管式3种不同微观结构。采用催化化学气相沉积法合成CNF时,微观结构可以通过改变生长动力学进行调控。CNF微观结构的不同导致表面棱边与基面原子比例不同,进而影响着表面含氧基团分布等性质。当CNF用作催化剂载体时,利用这些性质的不同可以调控负载金属颗粒的形貌以及载体与金属作用力等性质,从而改变催化剂的性能。CNF自身具有催化活性,其活性主要来自表面杂原子基团,因此也与CNF的微观结构密切相关。  相似文献   

9.
Blankets based on blends with different PAN/lignin ratios (10 and 50% wt. of lignin) were processed via electrospinning. Then, the blankets obtained were thermally treated in order to produce samples of carbon nanofibers. The thermo-oxidative stabilization parameters were defined based on a 23-factorial design. The samples, after stabilization, were analyzed by differential scanning calorimetry (DSC), thermogravimetry (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) techniques. Based on the results, the best parameters for the stabilization of electrospun, blankets were selected, and subsequently, the most adequate carbonization parameters were established to obtain the carbon blankets. The carbonized blankets were characterized for electrical conductivity by impedance spectroscopy, chemical structure (Raman and FT-IR spectroscopies), crystallographic ordering by X-ray diffraction (XRD), and morphology (SEM). The results showed the feasibility of producing carbon blankets based on PAN/lignin blends. However, carbonized blankets showed low carbon yield (10–56%) and a decrease of up to 70% in fiber diameter. XRD and Raman spectroscopy showed that the structural ordering of carbon blankets presents different values according to the heat treatment parameters used (45–57%) and a poorly ordered structure, indicated by the ID/IG ratio.  相似文献   

10.
We report the electrochemical performance of aromatic polyimide (PI)-based carbon nanofibers (CNFs), which were fabricated by electrospinning, imidization, and carbonization process of poly(amic acid) (PAA) as an aromatic PI precursor. For the purpose, PAA solution was electrospun into nanofibers, which were then converted into CNFs via one-step (PAA-CNFs) or two-step heat treatment (PI-CNFs) of imidization and carbonization. The FTIR and Raman spectra demonstrated a successful structural evolution from PAA nanofibers to PI nanofibers to CNFs at the molecular level. The SEM images revealed that the average diameter of the nanofibers decreased noticeably via imidization and carbonization, while it decreased slightly with increasing the carbonization temperature from 800 °C to 1000 °C. In case of PI-CNF carbonized at 1000 °C, a porous structure was developed on the surface of nanofibers. The electrical conductivity of PI-CNFs, which was even higher than that of PAA-CNFs, increased significantly from 0.41 to 2.50 S/cm with increasing the carbonization temperature. From cyclic voltammetry and galvanostatic charge/discharge tests, PI-CNF carbonized at 1000 °C was evaluated to have a maximum electrochemical performance of specific capacitance of ~126.3 F/g, energy density of ~12.2 Wh/kg, and power density of ~160 W/kg, in addition to an excellent operational stability. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47846.  相似文献   

11.
Oxidation protection of carbon materials by acid phosphate impregnation   总被引:3,自引:0,他引:3  
Weiming LuD.D.L. Chung 《Carbon》2002,40(8):1249-1254
Acid phosphate impregnation, with ozone pre-treatment, improves the oxidation resistance of carbon materials (polycrystalline graphite and pitch-based carbon fiber), as shown by weight measurement in air up to 1500 °C. The impregnation involves using phosphoric acid and dissolved aluminum hydroxide in the molar ratio 12:1 and results in a rough, white and hard aluminum metaphosphate coating of weight about 20% of that of the carbon before the treatment. Without ozone pre-treatment, the impregnation is not effective. Without aluminum hydroxide, the impregnation even degrades the oxidation resistance of the carbon.  相似文献   

12.
Growth of carbon nanofibers on activated carbon fiber fabrics   总被引:2,自引:0,他引:2  
Activated carbon fiber fabrics, an excellent adsorbent, were used as catalyst supports to grow carbon nanofibers. Because of the microporous structure of the activated carbon fibers, the catalysts could be distributed uniformly on the carbon surface. Based on this concept, the carbon nanofibers can be grown directly on the activated carbon fiber fabrics. We demonstrate that carbon nanofibers with a diameter between 20 and 50 nm for most of the fibers can be synthesized uniformly and densely on activated carbon fiber fabrics, impregnated by nickel nitrate catalyst precursor, using catalytic chemical vapor deposition. Although the carbon nanofibers are not straight with a crooked morphology, they form a three-dimensional network structure. Structure characterizations by TEM and XRD indicate that the carbon nanofibers have a turbostratic graphite structure and the graphite layers are stacked with a herringbone structure.  相似文献   

13.
14.
A series of novel microdomain-graphitized polyacrylonitrile (PAN)-based nanofibers were prepared by adding varied amounts of graphene oxide into the precursor via the electrospinning method. These hybrid electrospun nanofibers with were stabilized in ambient atmosphere, carbonized in nitrogen atmosphere and treated in NH3 atmosphere for NO oxidation with low concentration (50 ppm) at room temperature. The samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and nitrogen adsorption at 77 K. Oxidation of NO into NO2 at room temperature was investigated in a fiber fixed-bed. The results demonstrated that the reduced graphene oxide sheets provide catalytic active sites embedded in the PAN-based nanofibers. In addition it was determined that nitrogen-containing functional groups played important roles in the enhancement of the catalytic oxidation of NO to NO2. The samples with 5 wt.% GO exhibit the most catalytic oxidation of NO into NO2.  相似文献   

15.
X.Y. Tao  X.B. Zhang  L. Zhang  F. Liu  Z.Q. Luo 《Carbon》2006,44(8):1425-1428
Multi-branched carbon nanofibers with a porous structure have been synthesized on a Cu catalyst doped with Li, Na, or K. The products were characterized by field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy. Using this new type of nanofiber as polarized electrodes, an electrochemical double-layer capacitor with a specific capacitance of ca. 297 F/g was obtained using 6 M KOH as the electrolyte.  相似文献   

16.
Abstract

The present work presents a possibility to produce a rubber elastic and electrically conductive polymer material on the basis of dynamic vulcanisates. Thanks to the specific morphology of dynamic vulcanisates and the non-uniform carbon black distribution, carbon black filled dynamic vulcanisates can exhibit a very low percolation threshold of ~4 wt-%. Keeping the carbon black content low, a broad spectrum of resistivity properties can be achieved by variation of material factors like type and content of rubber phase and filler, concentration of cross-linking agent and compatibiliser and technological factors like mixing time respectively. In comparison with thermoplastic elastomers on the basis of block copolymers dynamic vulcanisates show a distinct lower percolation threshold. Up to a carbon black content of ~10 wt-% the mechanical properties of carbon black filled dynamic vulcanisates are not negative influenced essentially. To characterise the development of the carbon black dispersion and distribution processes and the conductivity properties in an internal mixer, the method of online measured electrical conductivity is suited very well for carbon black containing rubber mixtures. It could be shown in pre-investigations that this method promises to be a very useful tool for monitoring the mixing processes of carbon black filled dynamic vulcanisates in continuous mixing processes by means of extruders too.  相似文献   

17.
The use of proliferation of nanotechnology in commercial applications is driving requirements for minimal chemical processing and simple processes in industry. Carbon nanofiber (CNF) products possess very high purity levels without the need of purification processing before use and are in growing demand for this quality. Polyetherimide (PEI) has excellent mechanical and thermal performance, but its high viscosity makes its nanocomposites processing very challenging. In this study, a facile melt‐mixing method was used to fabricate PEI nanocomposites with as received and physically treated CNFs. The dispersion of CNFs was characterized by scanning electron microscopy, transmitted optical microscopy, and electrometer with large‐area electrodes. The results showed that the facile and powerful melt‐mixing method is effective in homogeneously dispersing CNFs in the PEI matrix. The flexural and tribological characteristics were investigated and the formation of spatial networks of CNFs and weak interfacial bonding were considered as competitive factors to enhanced flexural properties. The composites with 1.0 wt% CNFs showed flexural strength and toughness increased by more than 50 and 550%, respectively, but showed very high wear rate comparable with that of pure PEI. The length of the CNFs also exerted great influences on both mechanical and tribological behaviors. POLYM. ENG. SCI., 50:1914–1922, 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
The oxidation behavior and oxidation mechanism of carbon materials containing silicon and boron elements (C–Si–B materials) were investigated at different high temperatures in air. The carbon materials were prepared by oxidative pyrolysis of the polymer precursor, carborane-incorporated poly(dimethylsilylene-ethynylenephenyleneethynylene) (CB-PSEPE), at 800, 1000, or 1200 °C for 1 h under static air. Homogeneous dispersion of silicon and boron components in the carbon matrix could be achieved in the carbon materials after the pyrolysis. The oxidation behavior of the C–Si–B materials during the oxidation process was studied. The evolution of elemental composition and morphology of the surface layers of carbon materials was monitored by X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. The results imply that the formation of protective borosilicate layer in the surface is the main mechanism to provide remarkable oxidation resistance of the carbon materials. The obtained borosilicate layer with a self-healing property can withstand oxidation at 1000 °C in air.  相似文献   

19.
A strategy of industrial-scale manufacture for a wide range of carbon materials based on carbon nanofibers is proposed. It was shown that porous materials with a high sorption capacity can be obtained with the use of carbon nanofibers by means of conventional manufacturing operations. The results of studying of consolidation of carbon nanofibers with pyrolytic carbon are reported. It was found that the nature of carbon material has a substantial effect on the rate of deposition of pyrolytic carbon. The most appropriate temperature range in which carbon nanofibers should be consolidated for the preparation of materials with a high catalytic activity was determined.  相似文献   

20.
Two-dimensional carbon belts (CBs) made of carbon nanofibers (CNFs) supported on a carbon foam (CFoam) substrate have been synthesized by a procedure involving carbonization of polyamic acid (PAA)/Ni(NO3)2 solution impregnated polyurethane foam in flowing H2 at 700 °C and catalytic chemical vapor deposition (CCVD) using C2H4 as a carbon source and SO2 as a promoter. The CBs, which are hundreds of micrometers in length, several micrometers in width and tens of nanometers in thickness, are made of CNFs with a low degree of graphitization that array with an orientation roughly parallel to the longitudinal axis of the CBs. The results show that the mass ratio of Ni to PAA, a H2 atmosphere in carbonization and SO2 in CCVD process are the three key factors governing the growth of the CBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号