首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A cell based chip was designed to differentiate and to detect the effects of environmental chemicals on the neurite outgrowth in PC12 cell. To fabricate platform of cell chip, gold surfaces were modified by RGD based synthetic oligopeptide. Nanoscale controlled self-assembled peptide layer was investigated by Atomic Force Microscopy (AFM). On the fabricated cell chip, PC12 cell was immobilized and the differentiation of neurite outgrowth in PC12 cells was done by neurite growth factor (NGF). Differentiation of PC12 cell was confirmed by immunofluorescence study. Further the differentiation and the length of neurite was confirmed by confocal microscopy study. Voltammetry behavior of the neurite induced PC12 and the electrochemical behavior of the environmental toxicants effect on the neurite outgrowth was measured by cyclic voltammetry (CV). Self-assembled layer mediated cell immobilization technique and voltammetric signal analysis system can be applied to construct the neural cell chip for the detection of large number of environmental toxins and various neurotoxicants.  相似文献   

2.
Three-dimensional gel matrices provide specialized microenvironments that mimic native tissues and enable stem cells to grow and differentiate into specific cell types. Here, we show that collagen three-dimensional gel matrices prepared in combination with adhesive proteins, such as fibronectin (FN) and laminin (LN), provide significant cues to the differentiation into neuronal lineage of mesenchymal stem cells (MSCs) derived from rat bone marrow. When cultured within either a three-dimensional collagen gel alone or one containing either FN or LN, and free of nerve growth factor (NGF), the MSCs showed the development of numerous neurite outgrowths. These were, however, not readily observed in two-dimensional culture without the use of NGF. Immunofluorescence staining, western blot and fluorescence-activated cell sorting analyses demonstrated that a large population of cells was positive for NeuN and glial fibrillary acidic protein, which are specific to neuronal cells, when cultured in the three-dimensional collagen gel. The dependence of the neuronal differentiation of MSCs on the adhesive proteins containing three-dimensional gel matrices is considered to be closely related to focal adhesion kinase (FAK) activation through integrin receptor binding, as revealed by an experiment showing no neuronal outgrowth in the FAK-knockdown cells and stimulation of integrin β1 gene. The results provided herein suggest the potential role of three-dimensional collagen-based gel matrices combined with adhesive proteins in the neuronal differentiation of MSCs, even without the use of chemical differentiation factors. Furthermore, these findings suggest that three-dimensional gel matrices might be useful as nerve-regenerative scaffolds.  相似文献   

3.
In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.  相似文献   

4.
Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. To this end, we developed a neural tissue engineering scaffold that displays submicrometer-scale features, electrical conductivity, and neurotrophic activity. Specifically, electrospun poly(lactic acid-co-glycolic acid) (PLGA) nanofibers were layered with a nanometer thick coating of electrically conducting polypyrrole (PPy) presenting carboxylic groups. Then, nerve growth factor (NGF) was chemically immobilized onto the surface of the fibers. These NGF-immobilized PPy-coated PLGA (NGF-PPyPLGA) fibers supported PC12 neurite formation ( 28.0±3.0% of the cells) and neurite outgrowth (14.2 μm median length), which were comparable to that observed with NGF (50 ng/mL) in culture medium ( 29.0±1.3%, 14.4 μm). Electrical stimulation of PC12 cells on NGF-immobilized PPyPLGA fiber scaffolds was found to further improve neurite development and neurite length by 18% and 17%, respectively, compared to unstimulated cells on the NGF-immobilized fibers. Hence, submicrometer-scale fibrous scaffolds that incorporate neurotrophic and electroconducting activities may serve as promising neural tissue engineering scaffolds such as nerve guidance conduits.  相似文献   

5.
Electrically conductive and biologically active scaffolds are desirable for enhancing adhesion, proliferation and differentiation of a number of cell types such as neurons. Hence, the incorporation of neuroactive molecules into electroconductive polymers via a specific and stable method is essential for neuronal tissue engineering applications. Traditional conjugation approaches dramatically impair conductivities and/or stabilities of the scaffolds and ligands. In this study, we developed copolymers (PPy-NSE) of N-hydroxyl succinimidyl ester pyrrole and regular pyrrole, which can be immobilized with nerve growth factor (NGF) without significantly hindering electroconductivity. The presence of active ester groups was confirmed using reflectance infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) from the copolymers prepared from different monomer compositions. We selected PPy-NSE50 (polymerized from a 50 : 50 monomer ratio of pyrrole : pyrrole-NSE) for further modification with NGF because this copolymer retains good conductivity (approx. 8 S cm−1) and presents active ester groups for NGF immobilization. We tethered NGF on the PPy-NSE50 surface, and found that PC12 cells extended neurites similarly to cells cultured in NGF-containing medium. XPS and enzyme-linked immunosorbent assay confirmed that NGF immobilized via the active ester on the PPy-NSE50 film was stable for up to 5 days in phosphate-buffered saline solution. Also, application of an external electrical potential to NGF-immobilized PPy films did not cause a significant release of NGF nor reduce their neurotrophic activity. This novel scaffold, providing electroconductive and neurotrophic activities, has potential for neural applications, such as tissue engineering scaffolds and biosensors.  相似文献   

6.
Mechanical stress is a decisive factor for the differentiation, proliferation, and general behavior of cells. However, the specific signaling of mechanotransduction is not fully understood. One basic problem is the clear distinction between the different extracellular matrix (ECM) constituents that participate in cellular adhesion and their corresponding signaling pathways. Here, a system is proposed that enables mechanical stimulation of human-skin-derived keratinocytes and human dermal fibroblasts that specifically interact with peptide sequences immobilized on a non-interacting but deformable substrate. The peptide sequences mimic fibronectin, laminin, and collagen type IV, three major components of the ECM. To achieve this, PDMS is activated using ammonia plasma and coated with star-shaped isocyanate-terminated poly(ethylene glycol)-based prepolymers, which results in a functional coating that prevents unspecific cell adhesion. Specific cell adhesion is achieved by functionalization of the layers with the peptide sequences in different combinations. Moreover, a method that enables the decoration of deformable substrates with cell-adhesion peptides in extremely defined nanostructures is presented. The distance and clustering of cell adhesion molecules below 100 nm has been demonstrated to be of utmost importance for cell adhesion. Thus we present a new toolbox that allows for the detailed analysis of the adhesion of human-skin-derived cells on structurally and biochemically decorated deformable substrates.  相似文献   

7.
The density of integrin‐binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell‐adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient‐generating microfluidic devices with 3D protein‐engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia‐derived spheroids. Spheroids are encapsulated in elastin‐like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade‐off between neurite extension and neurite guidance is reminiscent of the well‐known trade‐off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix‐mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.  相似文献   

8.
The primary cortical cells were selected as a model to study the adherence and neural network development on chemically roughened silicon substrates without any coatings using confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM). The silicon substrates have a nano-range roughness (RMS) achieved by chemical etching using hydrofluoric (HF) acid. After 7 days of culturing, the neurons were observed to connect together and form dense neural networks. Furthermore, AFM results revealed that some porous structures at a few micrometer range existed between the neuron cells and the silicon substrates. It is suggested that the porous structures are made of extracellular matrix (ECM) components and play an important role in the neuronal adhesion and neurite outgrowth on the inert silicon wafers.  相似文献   

9.
In the latest years, the use of zinc oxide (ZnO) nanostructures has been proposed in different biomedical applications, however, to date, only a few contrasting results concerning their biocompatibility can be found in the literature. In particular, the application of the extraordinary piezoelectric properties of ZnO nanostructures has poorly been explored for the culture of electrically excitable cells, and, for this reason, systematic investigations of their interactions with these living systems appear to be necessary. In this paper, we report about adhesion, proliferation and differentiation of two mammalian cell lines (PC12, as model of neuronal cells, and H9c2, as model of muscle cells) over ZnO nanowire arrays. We demonstrate suitability of these arrays in sustaining cellular functions, and their potential in applications that range from tissue engineering to minimally invasive sensing and/or stimulation.  相似文献   

10.
In the native tissue, the interaction between cells and the extracellular matrix (ECM) is essential for cell migration, proliferation, differentiation, mechanical stability, and signaling. It has been shown that decellularized ECMs can be processed into injectable formulations, thereby allowing for minimally invasive delivery. Upon injection and increase in temperature, these materials self-assemble into porous gels forming a complex network of fibers with nanoscale structure. In this study we aimed to examine and tailor the material properties of a self-assembling ECM hydrogel derived from porcine myocardial tissue, which was developed as a tissue specific injectable scaffold for cardiac tissue engineering. The impact of gelation parameters on ECM hydrogels has not previously been explored. We examined how modulating pH, temperature, ionic strength, and concentration affected the nanoscale architecture, mechanical properties, and gelation kinetics. These material characteristics were assessed using scanning electron microscopy, rheometry, and spectrophotometry, respectively. Since the main component of the myocardial matrix is collagen, many similarities between the ECM hydrogel and collagen gels were observed in terms of the nanofibrous structure and modulation of properties by altering ionic strength. However, variation from collagen gels was noted for the gelation temperature along with varied times and rates of gelation. These discrepancies when compared to collagen are likely due to the presence of other ECM components in the decellularized ECM based hydrogel. These results demonstrate how the material properties of ECM hydrogels could be tailored for future in vitro and in vivo applications.  相似文献   

11.
Schwann cells play a key role in peripheral nerve regeneration. Failure in sufficient formation of Büngner bands due to impaired Schwann cell proliferation has significant effects on the functional outcome after regeneration. Therefore, the growth substrate for Schwann cells should be considered with highest priority in any peripheral nerve tissue engineering approach. Due to its excellent biocompatibility silk fibroin has most recently attracted considerable interest as a biomaterial for use as conduit material in peripheral nerve regeneration. In this study we established a protocol to covalently bind collagen and laminin, which have been isolated from human placenta, to silk fibroin utilizing carbodiimide chemistry. Altered adhesion, viability and proliferation of Schwann cells were evaluated. A cell adhesion assay revealed that the functionalization with both, laminin or collagen, significantly improved Schwann cell adhesion to silk fibroin. Moreover laminin drastically accelerated adhesion. Schwann cell proliferation and viability assessed with BrdU and MTT assay, respectively, were significantly increased in the laminin-functionalized groups. The results suggest beneficial effects of laminin on both, cell adhesion as well as proliferative behaviour of Schwann cells. To conclude, the covalent tailoring of silk fibroin drastically enhances its properties as a cell substratum for Schwann cells, which might help to overcome current hurdles bridging long distance gaps in peripheral nerve injuries with the use of silk-based nerve guidance conduits.  相似文献   

12.
Wide bandgap semiconductors such as gallium nitride (GaN) exhibit persistent photoconductivity properties. The incorporation of this asset into the fabrication of a unique biointerface is presented. Templates with lithographically defined regions with controlled roughness are generated during the semiconductor growth process. Template surface functional groups are varied using a benchtop surface functionalization procedure. The conductivity of the template is altered by exposure to UV light and the behavior of PC12 cells is mapped under different substrate conductivity. The pattern size and roughness are combined with surface chemistry to change the adhesion of PC12 cells when the GaN is made more conductive after UV light exposure. Furthermore, during neurite outgrowth, surface chemistry and initial conductivity difference are used to facilitate the extension to smoother areas on the GaN surface. These results can be utilized for unique bioelectronics interfaces to probe and control cellular behavior.  相似文献   

13.
In recent years, the utilization of nanomaterials such as carbon nanotubes (CNTs) in the field of neuroscience has forever changed the approach to nerve-related research. The array of novel properties CNTs possess allows them to interact with neurons at the nanodimensional scale. In this study, a CNT rope substrate is developed to allow the electrical stimulation of neural stem cells (NSCs) in culture medium and the in situ observation of the response of these stem cells after stimulation. CNTs are synthesized by chemical vapor deposition and prepared into a ropelike structure with a diameter of 1 mm and length of 1.5 cm. NSCs are differentiated on the CNT rope substrate while the direction of neurite outgrowth, phenotype, and maturity of the NSCs are analyzed. Fluorescence and scanning electron microscopy demonstrate that neurite extension favors the direction of the spiral topography on the CNT rope. NSCs plated on CNT ropes are boosted towards differentiated neurons in the early culture stage when compared to conventional tissue culture plates via the analysis of neuronal gene and protein expressions by quantitative polymerase chain reaction and immunostaining, respectively. Furthermore, a set of electrical stimulation parameters (5 mV, 0.5 mA, 25 ms intermittent stimulation) promotes neuronal maturity while also increasing the speed of neurite outgrowth. These results indicate that an electroconductive CNT rope substrate along with electrical stimulation may have a synergistic effect on promoting neurite elongation and boosting effects on the differentiation of NSCs into mature neuronal cells for therapeutic application in neural regeneration.  相似文献   

14.
The present in vitro study investigated the expression of basal lamina components by Schwann cells (SCs) cultivated on PCL and PLLA membranes prepared by solvent evaporation. Cultures of SCs were obtained from sciatic nerves from neonatal Sprague Dawley rats and seeded on 24 well culture plates containing the polymer membranes. The purity of the cultures was evaluated with a Schwann cell marker antibody (anti-S-100). After one week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, laminin I and II. Positive labeling against the studied molecules was observed, indicating that such biomaterials positively stimulate Schwann cell adhesion and proliferation. Overall, the present results provide evidence that membrane-derived biodegradable polymers, particularly those derived from PLLA, are able to provide adequate substrate and stimulate SCs to produce ECM molecules, what may have in turn positive effects in vivo, influencing the peripheral nerve regeneration process.  相似文献   

15.
Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), -Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells’ adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2>-SH>-COOH>-Phenyl>-Br>-OH>-CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.  相似文献   

16.
17.
Small intestinal submucosa (SIS) has been successfully used to treat a variety of damaged or diseased tissues in human patients. As a biologic scaffold, SIS stimulates repair of damaged or diseased tissues and organs with tissue that is similar in structure and function to the material it was meant to replace. To meet clinical safety requirements, biologic materials from animal tissues must undergo processing treatments to minimize host immune response and to eliminate the possibility of disease transmission. The effect of peracetic acid disinfection, lyophilization, and ethylene oxide sterilization on the in vitro bioactivity of the processed SIS was therefore examined in murine fibroblasts and pheochromocytoma (PC12) cells. Specifically, the ability of processed SIS to support fibroblast attachment, to stimulate PC12 cell differentiation, and to upregulate fibroblast VEGF secretion was examined. Fibroblasts attach to the sterilized SIS, remain viable, and more than double their secretion of VEGF as a result of interacting with the SIS matrix components. Additionally, PC12 cells exhibit increased neurite outgrowth following stimulation by SIS matrix proteins versus controls. We conclude that a biologic scaffold can be prepared for human use and still retain significant bioactivity.  相似文献   

18.
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to obtain oxygen and nutrients during tissue repair. With the aim to incorporate these desirable FGF biological properties into bioceramics for bone repair, silicon substituted hydroxyapatites (Si-HA) were used as materials to immobilize bioactive FGF-1 and FGF-2. Thus, the binding of these growth factors to powdered Si-HA and Si-HA scaffolds was carried out efficiently in the present study and both FGFs maintained its biological activity on osteoblasts after its immobilization. The improvement of cell adhesion and proliferation onto Si-HA scaffolds suggests the potential utility of these FGF/scaffolds for bone tissue engineering.  相似文献   

19.
Fan L  Feng C  Zhao W  Qian L  Wang Y  Li Y 《Nano letters》2012,12(7):3668-3673
Superaligned carbon nanotube (CNT) yarn patterned substrates were developed as the topographic scaffold for guiding the neurite outgrowth. As-prepared patterned substrates were used for culturing rat hippocampal neurons, without purifying and functionalizing processes on the CNTs. The neurite outgrowth on the patterned substrate exhibited a strong tendency to being aligned along the CNT yarns long axes. The neurite grown along the CNT yarns had much less branching than the one on a uniform planar substrate typically used for neuron culture. These results indicate that the pure CNT yarns possess the main characteristics of a guidance scaffold for neurite outgrowth. Furthermore, the CNT yarns can be mass produced and be easily weaved into desired structures, which may make them attractive for neuronal regeneration and tissue engineering.  相似文献   

20.
Living PC12 cells, a model cell type for studying neuronal function, were imaged using the negative feedback mode of a scanning electrochemical microscope (SECM). Six biocompatible redox mediators were successfully identified from a large pool of candidates and were then used for imaging PC12 cells before and after exposure to nerve growth factor (NGF). When exposed to NGF, cells differentiate into a neuron phenotype by growing narrow neurites (1-2 microm wide) that can extend > 100 microm from the cell proper. We demonstrate that carbon fiber electrodes with reduced tip diameters can be used for imaging both the cell proper and these neurites. Regions of decreased current, possibly resulting from raised features not identifiable by light microscopy, are clearly evident in the SECM images. Changes in the morphology of undifferentiated PC12 cells could be detected in real time with the SECM. After exposure to hypotonic and hypertonic solutions, reversible changes in cell height of <2 microm were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号