首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In rats, the phosphorothionate insecticide parathion exhibits greater toxicity than chlorpyrifos, while in catfish the toxicities are reversed. The in vitro inhibition of brain acetylcholinesterase (AChE) by the active metabolites of the insecticides and the rates at which these inhibitor-enzyme complexes undergo reactivation/ aging were investigated in both species. Rat AChE was more sensitive to inhibition than catfish AChE as demonstrated by greater bimolecular rate constants (ki) in rats than in catfish. In both species, chlorpyrifos-oxon yielded higher ki's than paraoxon. The higher association constant (KA) of chlorpyrifos-oxon than paraoxon in both species and the lack of significant differences in the phosphorylation constants (kp) suggest that association of the inhibitor with AChE is the principal factor in the different potencies between these two inhibitors. In catfish, the ki of chlorpyrifos-oxon was 22-fold greater than that of paraoxon, while in rats it was 9-fold greater, suggesting that target site sensitivity is an important factor in the higher toxicity of chlorpyrifos to catfish but not in the higher toxicity of parathion to rats. No spontaneous reactivation of phosphorylated catfish AChE occurred and there were no differences in the first oder aging constants (ka) between compounds. For phosphorylated rat AChE, there were no differences in the first order reactivation constants (kr) but the ka for chlorpyrifos-oxon was significantly greater than that for paraoxon. This difference suggests that the steric positioning of the diethyl phosphate in the esteratic site is not the same between the two compounds, leading to differences in aging.  相似文献   

2.
The effects of the irreversible acetylcholinesterase (AChE) antagonist paraoxon (Px) on hippocampal neurophysiology were investigated and compared to those of physostigmine in urethane-anaesthetized rabbits. Hippocampal CA1 EEG signals were analyzed by power spectra. Following intracarotid administration, the two drugs induced a similar fundamental low-frequency theta power peak while the appearance of a second theta harmonic was commonly found under Px. Again, inhibition of CA1 pyramidal cells firing was significantly more pronounced after Px injection than after physostigmine. A potent inhibitory action was also described following local Px iontophoretic application. However, a discrepancy appeared between the effects of Px and the classical cholinergic drugs (acetylcholine, physostigmine). The results indicate that Px and physostigmine have a rather similar influence on the septo-hippocampal pathway and support suggestions that Px could act within local hippocampal circuitry through other systems than the cholinergic system exclusively.  相似文献   

3.
Nicotinic acetylcholine receptors (nAChR) are diverse members of the ligand-gated ion channel superfamily of neurotransmitter receptors and play critical roles in chemical signaling throughout the nervous system. Reports of effects of substance P (SP) on nAChR function prompted us to investigate interactions between several tachykinins and human nAChR subtypes using clonal cell lines as simple experimental models. Acute exposure to SP inhibits carbamylcholine- or nicotine-stimulated function measured using 86Rb+ efflux assays of human ganglionic (alpha 3 beta 4) nAChR expressed in SH-SY5Y neuroblastoma cells (IC50 approximately 2.3 microM) or of human muscle-type (alpha 1 beta 1 gamma delta) nAChR expressed in TE671/RD clonal cells (IC50 approximately 21 microM). SP also acutely blocks function of rat ganglionic nAChR expressed in PC12 pheochromocytoma cells (IC50 approximately 2.1 microM). Neurokinin A and eledoisin inhibit function (extrapolated IC50 values between 60 and 160 microM) of human muscle-type or ganglionic nAChR, but neurokinin B does not, and neither human nAChR is as sensitive as PC12 cell alpha 3 beta 4-nAChR to eledoisin or neurokinin A inhibition. At concentrations that produce blockade of nAChR function, SP fails to affect binding of [3H]acetylcholine to human muscle-type or ganglionic nAChR. SP-mediated blockade of rat or human ganglionic nAChR function is insurmountable by increasing agonist concentrations. Collectively, these results indicate that tachykinins act noncompetitively to inhibit human nAChR function with potencies that vary across tachykinins and nAChR subtypes. They also indicate that tachykinin actions at nAChR could further contribute to complex cross-talk between nicotinic cholinergic and tachykinin signals in regulation of nervous system activity.  相似文献   

4.
We have used the human sympathetic neuronal line SH-SY5Y to investigate the effects of hypoxia on noradrenaline (NA) release evoked by either raised [K+]o (100 mM) or the nicotinic acetylcholine receptor (nAChR) agonist dimethylphenylpiperazinium iodide (DMPP). NA release was monitored by loading cells with [3H]NA and collecting effluent fractions from perfused cells kept in a sealed perifusion chamber. Cells were challenged twice with either stimulus and release was expressed as that evoked by the second challenge as a fraction of that evoked by the first. K+-evoked release was unaffected by hypoxia (PO2 approximately 30-38 mm Hg), but release evoked by DMPP was significantly increased. For both stimuli, replacement of Ca2+o with 1 mM EGTA abolished NA release. K+-evoked release was also dramatically reduced in the presence of 200 microM Cd2+ to block voltage-gated Ca2+ channels, but DMPP-evoked release was less affected. In hypoxia, DMPP-evoked Cd2+-resistant NA release was dramatically increased. Our findings indicate that hypoxia increases NA release evoked from SH-SY5Y cells in response to nAChR activation by increasing Ca2+ influx through the nAChR pore, or by activating an unidentified Cd2+-resistant Ca2+-influx pathway. As acetylcholine is the endogenous transmitter at sympathetic ganglia, these findings may have important implications for sympathetic activity under hypoxic conditions.  相似文献   

5.
The potency of a series of anticholinesterase (anti-ChE) agents and serotonin-related amines as inhibitors of the aryl acylamidase (AAA) activity associated with electric eel acetylcholinesterase (AChE) (EC 3.1.1.7) and horse serum butyrylcholinesterase (BuChE) (EC 3.1.1.8) was examined and compared with the potency of the same compounds as ChE inhibitors. Neostigmine, physostigmine, BW 284C51, (+/-)-huperzine A, E2020, tacrine, edrophonium and heptyl-physostigmine were, in that order, the most potent in inhibiting eel AChE-associated AAA activity, their inhibitor constant (Ki) values being in the range 0.02-0.37 microM. The rank order of the same compounds as AChE inhibitors basically paralleled that of AAA, although they were in general stronger on AChE (Ki = 0.001-0.05). The peripheral anionic site inhibitors propidium and gallamine were inactive on AChE-associated AAA. Serotonin and its derivatives were slightly stronger on AAA (Ki = 7.5-30 microM) than on AChE (Ki = 20-140 microM). Tacrine (IC50 = 0.03 microM), diisopropylfluorophosphate (IC50 = 0.04 microM), heptyl-physostigmine (IC50 = 0.11 microM), physostigmine (IC50 = 0.15 microM) and tetra-iso-propylpyrophosphoramide (iso-OMPA) (IC50 = 0.75 microM) were the most potent in inhibiting horse serum BuChE-associated AAA activity. Serotonin and related amines were very weak on BuChE-associated AAA activity. These results indicate that the inhibitory potencies of the active site anti-ChE agents on the AAA activity associated with eel AChE and horse serum BuChE are closely correlated with their action on the respective ChE. In addition, the efficacy of tacrine, E2020, heptyl-physostigmine and (+/-)-huperzine A in the treatment of Alzheimer's disease is unlikely to be related to the action of these drugs on ChE-associated AAA.  相似文献   

6.
For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing alpha4beta2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing alpha3, alpha5, alpha7, beta2, and beta4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (-30-80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25-240 mM) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 mM) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 mM ethanol significantly decreased the mRNA level for the alpha3 nAChR subunit (-39%), while the mRNA levels for the alpha7 (+30%) and alpha4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the beta2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

7.
Tacrine and physostigmine were tested for direct nicotinic actions on Xenopus oocytes microinjected with Torpedo electroplaque membranes. In this preparation, responses to acetylcholine arise 6-8 h after microinjection, due to the incorporation of nicotinic receptors into the plasma membrane by a process not involving protein synthesis. Currents elicited by acetylcholine (100-1000 microM) were recorded by two-electrode voltage clamping. Tacrine (1-1000 microM) and physostigmine (1-100 microM) exerted a potent, reversible block of the nicotinic receptors. The concentration-dependence curves fitted simple hyperbolas, suggesting a stoichiometry of 1:1 in the drug-channel interactions. Currents elicited by the highest acetylcholine concentration were inhibited by tacrine with maximal affinity, indicating an action at a site other than the ligand-binding domain. Inhibition was reduced at depolarising potentials, which is consistent with a preferential interaction with the ligand-bound form of the receptor. Blockade by tacrine or physostigmine was accompanied by a concentration-dependent slowing of the desensitisation, resembling the action of local anaesthetics. These results could indicate a modulatory effect of these drugs on neurosecretion through nicotinic receptors.  相似文献   

8.
9.
The presynaptic nicotinic modulation of dopamine release from striatal nerve terminals is well established, but the subtype(s) of neuronal nicotinic acetylcholine receptor (nAChR) underlying this response has not been identified. Recently, alpha-conotoxin-MII has been reported to inhibit potently and selectively the rat alpha3beta2 combination of nAChR subunits. Here we have synthesised the peptide, confirmed its specificity, and examined its effect on the (+/-)-anatoxin-a-evoked release of [3H]dopamine from rat striatal synaptosomes and slices. Alpha-conotoxin-MII (112 nM) completely blocked acetylcholine-evoked currents of alpha3beta2 nAChRs expressed in Xenopus oocytes (IC50 = 8.0 +/- 1.1 nM). Pairwise combinations of other nicotinic subunits were not blocked by 112 nM alpha-conotoxin-MII. On perfused striatal synaptosomes and slices, alpha-conotoxin-MII dose-dependently inhibited [3H]dopamine release evoked by 1 microM (+/-)-anatoxin-a with IC50 values of 24.3 +/- 2.9 and 17.3 +/- 0.1 nM, respectively. The dose-response curve was shifted to the right with increasing agonist concentrations. However, the maximal inhibition of responses achieved by alpha-conotoxin-MII (112 nM) was 44.9 +/- 5.4% for synaptosomes and 25.0 +/- 4.1% for slices, compared with an inhibition by 10 microM mecamylamine of 77.9 +/- 3.7 and 88.0 +/- 2.1%, respectively. These results suggest the presence of presynaptic alpha3beta2-like nAChRs on striatal dopaminergic terminals, but the incomplete block of (+/-)-anatoxin-a-evoked [3H]dopamine release by alpha-conotoxin-MII also supports the participation of nAChRs composed of other subunits. The lower inhibition found in slices is consistent with an additional indirect nicotinic stimulation of dopamine release via an alpha-conotoxin-MII-insensitive nAChR.  相似文献   

10.
The nonsteroidal antioestrogen tamoxifen has been shown to block a number of voltage-gated cation-selective channels but its effect on ligand-gated cation-selective channels has not been studied. We have investigated the action of tamoxifen and the related derivative toremifene on ligand-gated cationic nicotinic acetylcholine and 5-HT3 receptor channels. Tamoxifen and toremifene both inhibited cationic currents of adult-type human muscle nicotinic acetylcholine receptors expressed in Xenopus oocytes with similar IC50 values of 1.2 +/- 0.03 microM (nH = 0.84 +/- 0.02) and 1.2 +/- 0.1 microM (nH = 1.1 +/- 0.1), respectively. Tamoxifen could also block native 5-HT3 receptors in NG108-15 neuroblastoma/glioma hybrid cells with IC50 = 0.81 +/- 0.15 microM and nH of 1.3 +/- 0.3. The characteristics of block by tamoxifen at the 5-HT3 receptor were voltage- and use-independent. The inhibition of the 5-HT-evoked currents were not overcome by increasing concentrations of 5-HT consistent with a noncompetitive mechanism of block.  相似文献   

11.
Besides the fast tetrodotoxin-sensitive Na+ current, small dorsal root ganglion neurones of rats also possess a slower tetrodotoxin-resistant Na+ current. The blocking effect of commonly used local anaesthetics upon the tetrodotoxin-resistant Na+ current was investigated in the present paper. Dorsal root ganglia were dissected from adult rats and cells were enzymatically isolated. The whole-cell patch clamp technique was then used to measure inward Na+ currents of small dorsal root ganglion neurones. Externally applied local anaesthetics reversibly blocked the tetrodotoxin-resistant Na+ current in a dose-dependent manner. Half-maximal blocking concentrations for tonic block were: lignocaine, 326 microM; prilocaine, 253 microM; mepivacaine, 166 microM; etidocaine, 196 microM bupivacaine, 57 microM procaine, 518 microM benzocaine, 489 microM; tetracaine, 21 microM; and dibucaine, 23 microM. Blocking of the current by lignocaine was independent of temperature. The quaternary lignocaine derivative OX-314 did not have any effect upon the tetrodotoxin-resistant Na+ current when applied externally. High concentrations of tetrodotoxin also blocked the tetrodotoxin-resistant Na+ current with a half-maximal blocking concentration of 115 microM. The block by high tetrodotoxin concentrations did not compete with the lignocaine block, suggesting that there were two independent blocking mechanisms for the two substances. The tetrodotoxin-resistant Na+ currents also showed a marked sensitivity to phasic (use-dependent) block by local anaesthetics.  相似文献   

12.
Patch-clamp recording was used to characterise a delayed rectifier potassium channel and the effects of external tetraethylammonium (TEA) in neurons isolated from the CA1 region of cultured neonatal rat hippocampus. A preliminary kinetic analysis is presented. Very low concentrations of TEA included in the patch pipette solution had two effects on unitary currents: first unitary currents were reduced in amplitude, with an associated increase in open channel noise, and second channel mean open time was reduced. The reduction in unitary amplitude was consistent with a single TEA molecule blocking the channel with a voltage-independent Kd of 53.4 microM. The blocking and unblocking rate constants, estimated using two independent methods, were approximately 350 mM-1 ms-1 and 20 ms-1, both rate constants being independent of voltage. Channels blocked in this way appeared able to close normally without first having to become unblocked. The reduction in mean channel open time was probably due to a second, kinetically slower blocking reaction with a much lower Kd, probably between 300 and 800 microM. The voltage-independent blocking rate constant of the slower block was at least 25 times slower than that of the faster block.  相似文献   

13.
Atropine, the classic muscarinic receptor antagonist, inhibits ion currents mediated by neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. At the holding potential of -80 mV, 1 microM atropine inhibits 1 mM acetylcholine-induced inward currents mediated by rat alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4, and alpha7 nicotinic receptors by 12-56%. Inward currents induced with a low agonist concentration are equally inhibited (alpha3beta2, alpha3beta4), less inhibited (alpha2beta4, alpha7), or potentiated (alpha4beta2, alpha4beta4) by 1 microM atropine. Effects on the more sensitive alpha4beta4 nicotinic receptors were investigated in detail by systematic variation of acetylcholine and atropine concentrations and of membrane potential. At high agonist concentration, atropine inhibits alpha4beta4 nicotinic receptor-mediated ion current in a noncompetitive, voltage-dependent way with IC50 values of 655 nM at -80 mV and of 4.5 microM at -40 mV. At low agonist concentration, 1 microM atropine potentiates alpha4beta4 nicotinic receptor-mediated ion current. This potentiating effect is surmounted by high concentrations of acetylcholine, indicating a competitive interaction of atropine with the nicotinic receptor, and potentiation is also reversed at high atropine concentrations. Steady state effects of acetylcholine and atropine are accounted for by a model for combined receptor occupation and channel block, in which atropine acts on two distinct sites. The first site is associated with noncompetitive ion channel block. The second site is associated with competitive potentiation, which appears to occur when the agonist recognition sites of the receptor are occupied by acetylcholine and atropine. The apparent affinity of atropine for the agonist recognition sites of the alpha4beta4 nicotinic acetylcholine receptor is estimated to be 29.9 microM.  相似文献   

14.
Intake of nicotine has been related in many cases to acute or chronic hypertension. Using the patch-clamp technique the effect of nicotine on voltage-dependent K+ channel currents in rat tail artery smooth muscle cells was studied. Nicotine at concentrations of 1-100 microM or 0.3-3 mM increased or decreased, respectively, the amplitude of the tetraethylammonium-sensitive K+ currents. Pretreatment of cells with 10 microM dihydro-beta-erythroidine hydrobromide, a nicotinic receptor antagonist, abolished the excitatory effect (n=6), but not the inhibitory effect (n=10), of nicotine on K+ channel currents. The activation of nicotinic receptors with 100 microM 1,1-dimethyl-4-phenylpiperazinium iodide increased K+ channel currents by 27.4+/-3.8% (n=13, P < 0.01). Our results indicate that the excitatory and inhibitory effects of nicotine on K+ channels are respectively mediated by a nicotinic receptor-dependent mechanism and by a direct interaction of nicotine with K+ channels.  相似文献   

15.
1 In vitro studies with human erythrocyte acetylcholinesterase (AChE) and the mouse diaphragm model were performed to unravel the various microscopic reaction parameters that contribute to the dynamic equilibrium of AChE inhibition, ageing and reactivation. These data may help to define more precisely the indications and limitations of oxime therapy in organophosphate (OP) poisoning. 2 Diethylphosphoryl-AChE resulting from intoxications with parathion, chlorpyrifos, chlorfenvinphos, diazinon and other OPs is characterized by slow spontaneous reactivation and low propensity for ageing. This kind of phosphorylated enzyme is particularly susceptible to reactivation by oximes. 3 None of the oximes tested (pralidoxime, obidoxime, HI 6 and HL? 7) can be regarded as a universally suitable reactivator. Obidoxime turned out to be the most potent and most efficacious oxime in reactivating AChE inhibited by various classes of OP insecticides and tabun. Obidoxime, however, was inferior to HI 6 against soman, sarin, cyclosarin and VX. Pralidoxime was generally less potent. 4 The kinetic data of reactivation established for diethylphosphoryl-AChE of human red cells indicate that the usually recommended dosage to attain a plasma concentration of 4 micrograms/ml does not permit exploitation of the full therapeutic potential of the oximes, in particular of pralidoxime. However, in suicidal mega-dose poisoning, oximes, even at optimal plasma concentrations, may be unable to cope with the fast re-inhibition of reactivated AChE in the first days following intoxication. 5 It is suggested that oximes be administered by continuous infusion following an initial bolus dose as long as reactivation can be expected and until permanent clinical improvement is achieved.  相似文献   

16.
In the present study, we demonstrate that choline, a precursor of acetylcholine (ACh) and a product of acetylcholine hydrolysis by acetylcholinesterase (AChE), acts as an efficient and relatively selective agonist of alpha7-containing nicotinic acetylcholine receptors (nAChR) in neurons cultured from the rat hippocampus, olfactory bulb and thalamus as well as in PC12 cells. Choline was able to activate postsynaptic and presynaptic alpha7 nAChRs, with the latter action resulting in the release of other neurotransmitters. Although choline was approximately one order of magnitude less potent than ACh (EC50 of 1.6 mM for choline and 0.13 mM for ACh), it acted as a full agonist at alpha7 nAChRs. In contrast, choline did not activate alpha4beta2 agonist-bearing nAChRs on hippocampal neurons, and acted as a partial agonist at alpha3beta4-containing nAChRs on PC12 cells. The ethyl alcohol moiety of choline is required for the selective action on alpha7 nAChR. Exposure of cultured hippocampal neurons for 10 min to choline (10-100 microM) resulted in desensitization of the native alpha7 nAChRs. Moreover, chronic exposure (10 days) of the cultured hippocampal neurons to a desensitizing concentration of choline (approximately 30 microM) decreased their responsiveness to ACh. The selective action of choline on native alpha7 nAChRs suggests that this naturally occurring compound may act in vivo as an endogenous ligand for these receptors. Putative physiological actions of choline include retrograde messenger activity during the development of the mammalian central nervous system and during periods of elevated synaptic activity that leads to long-term potentiation.  相似文献   

17.
A paralytic peptide, psi-conotoxin Piiie has been purified and characterized from Conus purpurascens venom. Electrophysiological studies indicate that the peptide inhibits the nicotinic acetylcholine receptor (nAChR). However, the peptide does not block the binding of alpha-bungarotoxin, a competitive nAChR antagonist. Thus, psi-conotoxin Piiie appears to inhibit the receptor at a site other than the acetylcholine-binding site. As ascertained by sequence analysis, mass spectrometry, and chemical synthesis, the peptide has the following covalent structure: HOOCCLYGKCRRYOGCSSASCCQR* (O = 4-trans hydroxyproline; * indicates an amidated C-terminus). The disulfide connectivity of the toxin is unrelated to the alpha- or the alphaA-conotoxins, the Conus peptide families that are competitive inhibitors of the nAChR, but shows homology to the mu-conotoxins (which are Na+ channel blockers).  相似文献   

18.
The majority of insecticides currently in use throughout the world belong to the class of the organophosphorus insecticides. Many of these compounds, such as the phosphorothioate insecticides, exert their mammalian toxicity only after undergoing metabolic activation by a variety of cytochrome P450 isoforms to produce their corresponding oxygen analogs (or oxons), which are potent inhibitors of the critical enzyme acetylcholinesterase. Of the many chemicals identified that can modulate cytochrome P450-dependent activities, the flavonoids represent some of the most unusual compounds in that they have been reported to both inhibit and stimulate certain activities. The present study was undertaken to determine if representative flavonoids (at in vitro concentrations of 1-100 microM) can alter the mammalian cytochrome P450-dependent biotransformation and acute toxicity of the phosphorothioate insecticide parathion. The flavonoids 5,6-benzoflavone, flavone, and quercetin had the biphasic effect of stimulating mouse hepatic microsomal parathion oxidation at a concentration of 1 microM, and inhibiting this same activity when increased to 100 microM. In contrast, 7,8-benzoflavone was only inhibitory at all concentrations examined. All the flavonoids examined except quercetin altered the ratio of activation/detoxification of parathion by mouse hepatic microsomes, but had no effect on this same ratio with human CYP1A2. These data suggest that the changes in the activation/detoxification ratio observed with mouse hepatic microsomes resulted from selective inhibition or stimulation of various cytochrome P450 isoforms rather than a flavonoid-induced alteration in the nonenzymatic rearrangement of the putative phosphooxythirane intermediate generated by cytochromes P450 from parathion. Surprisingly, however, none of the four flavonoids in the current study affected the lethality of parathion in vivo, suggesting that the flavonoid-induced alterations in cytochrome P-450-dependent metabolism of parathion documented in vitro were simply not great enough to be of any significance in vivo.  相似文献   

19.
A fiber-optic microbial biosensor suitable for direct measurement of organophosphate nerve agents was developed. The unique features of this novel microbial biosensor were the recombinant Escherichia coli cells expressing the enzyme organophosphorus hydrolase on the cell surface and the optical detection of the products of enzyme-catalyzed organophosphate hydrolysis. The use of cells with the metabolic enzyme expressed on the cell surface as a biological sensing element provides advantages of no resistance to mass transport of the analyte and product across the cell membrane and low cost due to elimination of enzyme purification, over the conventional microbial biosensors based on cells expressing enzyme intracellularly and enzyme-based sensors, respectively. The use of an optical transducer allows the detection of different organophosphates in a mixture, presently not feasible with acetylcholinesterase-based biosensors. E. coli cells expressing organophosphorus hydrolase (OPH) on the cell surface were immobilized in low melting temperature agarose on a nylon membrane and attached to the common end of a bifurcated fiber-optic bundle. OPH-expressing E. coli cells catalyzed the hydrolysis of organophosphorus pesticides to form stoichiometric amounts of chromophoric products that absorb light at specific wavelengths. The backscattered radiation of the specific wavelength incident light was measured using a photomultiplier detector and correlated to the organophosphate concentration. The best sensitivity and response time were obtained using a sensor constructed with 1.5 mg of cells operating in pH 9, 50 mM HEPES buffer with 100 mM NaCl and 0.05 mM CoCl2 at 30 degrees C. At optimized conditions, the biosensor measured paraoxon, parathion, and coumaphos pesticides with high selectivity against triazine and carbamate pesticides in approximately 10 min. The lower detection limits were 3 microM for paraoxon and parathion and 5 microM for coumaphos. When stored in the buffer at 22 degrees C, the biosensor was stable for over a 1-month period and showed no decline in the response for over 75 repeated usages. The new fiber-optic microbial biosensor is an ideal tool for on-line monitoring of the detoxification process for organophosphate pesticides-contaminated wastewaters but may not be suitable for environmental monitoring.  相似文献   

20.
The effects of glyceryl nonivamide (GLNVA) on ionic currents were compared and examined in rat pituitary GH3 cells. Hyperpolarization-activated K+ currents in GH3 cells bathed in high-K+ Ca2+-free external solution were studied to assess effects of GLNVA on the an inwardly rectifying K+ current (I(K(IR))). GLNVA is very potent in blocking I(K(IR)) in a concentration-dependent manner, with a half maximal concentrations of 0.1 microM. The complete block of I(K(IR)) achieved with concentrations > or = 1 microM revealed the presence of a non-inactivating current. We also found that GLNVA at a concentration above 30 microM inhibited L-type voltage-dependent Ca2+ current and two components of K+ outward currents, while GLNVA (< or = 3 microM) did not have any effect on them. This study shows that GLNVA, in addition to retaining the capability of eliciting peptidergic neurons, is a selective block of I(K(IR)) in GH3 cells and will provide a useful tool for characterizing I(K(IR)) and understanding its physiological function. In addition, the carefulness should be taken about the interpretation of GLNVA-mediated responses in vivo or in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号