首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
A transient heat transfer model has been development for a thermal response test (TRT) on a vertical borehole with a U-tube. Vertical borehole heat exchangers are frequently coupled to ground source heat pumps, which heat and cool buildings. The model provides an analytical solution for the vertical temperature profiles of the circulating fluid through the U-tube, and the temperature distribution in the ground. The model is verified with data sets from a laboratory sandbox and field TRTs, as well as a previously reported numerical solution. Unlike previous analytical models, the vertical profiles for the circulating fluid are generated by the model without any assumption of their functional form.  相似文献   

2.
This paper presents a performance study of deep borehole heat exchangers. The coaxial borehole heat exchanger (BHE) has been selected because for the present conditions it has a better performance than the conventional U-tube BHE. A numerical model has been developed to study the coaxial BHE. The model predictions are compared to detailed distributed temperature measurements obtained during a thermal response test. The model is found to accurately predict the behavior of a coaxial BHE. The influence of the flow direction of the mass flow is studied for BHEs in the range 200 m–500 m. A parametric performance study is then carried out for the coaxial case with different borehole depths, flow rates and collector properties. The results clearly show a significant increase in the system performance with depth. In addition, it is shown that with increasing borehole depth, the heat load that can be sustained by the BHE is significantly increased. An overall performance chart for coaxial BHEs for the depths of 300–1000 m is presented. The chart can be used as a guide when sizing deep BHE installations.  相似文献   

3.
The effects of using various types of nanofluids and Reynolds numbers on heat transfer and fluid flow characteristics in a square shaped microchannel heat exchanger (MCHE) is numerically investigated in this study. The performance of an aluminum MCHE with four different types of nanofluids (aluminum oxide (Al2O3), silicon dioxide (SiO2), silver (Ag), and titanium dioxide (TiO2)), with three different nanoparticle volume fractions of 2%, 5% and 10% using water as base fluid is comprehensively analyzed. The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a balanced MCHE are solved using the finite volume method. The MCHE performance is evaluated in terms of temperature profile, heat transfer rate, heat transfer coefficient, pressure drop, wall shear stress pumping power, effectiveness, and overall performance index. The results reveal that nanofluids can enhance the thermal properties and performance of the heat exchanger while having a slight increase in pressure drop. It was also found that increasing the Reynolds number causes the pumping power to increase and the effectiveness to decrease.  相似文献   

4.
Experiments were carried out to study the heat transfer characteristics of a single-row aluminum fin-and-tube crossflow heat exchanger with an emphasis in the regime of low flow rate of the in-tube fluid. The Chilton-Colburn analogy, in conjunction with the least-squares power-law technique, was used to correlate experimental data. Both air- and water-side heat transfer correlations were developed in the form of the Nusselt numbers as a function of Reynolds and Prandtl numbers. The experimental observations are quantitatively compared to the predictions of correlations available in the published literature. Different transfer mechanisms were found to be operative in the ranges of water-side Reynolds numbers based on the hydraulic diameter. In a range of Reynolds number from 1,200 to 6,000, the water-side thermal resistance accounts for less than ten percent of the overall thermal resistance. The dominant thermal resistance is always on the air-side. On the other hand, the thermal resistance of water-side is nearly equal to that of air-side in a Reynolds number range from 500 to 1,200.  相似文献   

5.
This paper presents the development and application of a three-dimensional (3D) numerical simulation model for U-tube borehole heat exchangers (BHEs). The proposed model includes the thermal capacities of the borehole components, viz., the fluid inside the tubes, as well as the grouting material, making it possible to consider the transient effects of heat and mass transports inside the borehole. In this approach, the use of simplified thermal resistance and capacity models (TRCMs) provides accurate results while substantially reducing the number of nodes and the computation time compared with fully discretized computations such as finite element (FE) models. The model is compared with a fully discretized FE model which serves as a reference. Furthermore, the model is used to evaluate thermal response test (TRT) data by the parameter estimation technique. Comparison of the model results with the results of an analytical model based on the line-source theory further establishes the advantage of the developed 3D transient model, as the test duration can be shortened and results are more accurate.  相似文献   

6.
螺旋套管换热器传热特性研究   总被引:2,自引:0,他引:2  
根据螺旋套管换热器的结构特点及传热特性,建立了水一水蒸气的流动与传热的三维几何模型.利用Fluem时不同工况下的螺旋套管进行了数值模拟,得出了湍流状态下螺旋套管内流体的温度场、速度场和压力场;利用搭建的螺旋套管换热器试验台,得出多种工况下的传热系数,为螺旋套管换热器的设计计算提供了依据.同时将试验结果和数值模拟结果进行...  相似文献   

7.
Deep borehole heat exchanger (DBHE) is attracting attention intensively owing to much more geothermal extraction, higher efficiency for heat pumps, and lesser land demand compared with shallow borehole heat exchanger. DBHE is usually dipped into several thousand meters in the subsurface, having a complicated heat transfer with surrounding rock–soil. However, the heat transfer characteristics below surface under different conditions are rarely studied. In this study, a numerical model considering the comprehensive effects of geothermal gradients and heat loss from inner pipe was proposed. The model was validated with experimental data and Beier analytical solution. Based on the model, the effects of primary design parameters on the heat transfer performance below surface along the pipe were investigated. The results indicate that temperature at pipe bottom increases with inlet flow rate decreasing, while the heat load cannot be extracted fully to the surface because of the heat loss of inner pipe. When the inlet flow rates decrease from 41.39 to 4.52 m3/h, the heat loss ratio increases from 25.5% to 63.7%. It is an effective way of insulating inner pipe to reduce heat loss under low inlet flow rates. Increasing the velocity in inner pipe by lessening the inner pipe diameter can also decline the heat loss well. While by this way, the increasing pumping power resulting from the higher velocity in inner pipe has to be considered. This study is significant to effective optimization of DBHE and energy conservation of buildings.  相似文献   

8.
针对深井地埋管换热系统运行原理,根据地埋管换热器热阻-热容优化模型,建立深井地埋管井孔内、外非稳态柱坐标传热模型。基于环渤海湾盆地埋深1 000~2 000 m热储层水文地质条件,采用双连续介质空间耦合有限元数值计算方法,分析深井地埋管典型配置参数取值对于地埋管换热性能的影响程度。研究结果表明:深井地埋管换热性能随着系统运行时间的推移出现衰减趋势,至供暖季末期(120.0 d)深井地埋管换热量下降20%左右;当深井地埋管循环水量由10增大到60 m3/h时,深井地埋管平均换热量提高150.80 kW,同时循环水泵耗功率也相应提高26.00 kW;深井地埋管埋深由1 600提高到2 400 m时,平均换热量提高113%,耗功率提高50%;当进水套管直径由168提高到299 mm时,平均换热量提高10%,耗功率降低27%。  相似文献   

9.
为了研究无干扰换热条件下,中深层地热能的实际取热性能,文章通过数值模拟方法模拟计算了套管式中深层地埋管换热器的名义取热量。模拟结果表明,套管式中深层地埋管换热器的名义取热量随着钻孔深度、大地热流、循环水流量、当地大气年平均温度的增加而增加。套管式中深层地埋管换热器周围土层的地质条件分布也影响着中深层地埋管换热器的名义取热量,具体表现为浅层土层的导热系数越小,中深层地埋管换热器的名义取热量越大;深层土层的导热系数越大,中深层地埋管换热器的名义取热量也越大。通过调整地埋管换热器的相关参数,并选择合适的地埋管埋设地点等优化措施,可使套管式中深层地埋管换热器达到可观的名义取热量。  相似文献   

10.
氟塑料换热器以其耐腐蚀、耐磨损等优点而备受关注,但氟塑料热导率较低,换热能力差,限制了其广泛应用。石墨烯-PFA复合材料兼具石墨烯优异的导热性和可熔性聚四氟乙烯(PFA)良好的耐酸碱腐蚀性,是新一代的换热器材料。搭建了余热回收测试实验台,对石墨烯-PFA复合材料换热器和金属换热器的传热性能进行对比。研究了不同烟气流速、不同进口烟气温度以及不同石墨烯配比对复合材料传热性能的影响。结果表明:对于金属换热器和复合材料换热器,当烟气流速从2.0增加到4.0 m/s时,传热系数分别增加到原来的1.19和1.34倍;随着进口烟温的升高,两种材质的传热系数分别降低了15.6%和14.7%;随着石墨烯含量增加,复合材料的导热系数以及传热系数均增加。  相似文献   

11.
Ground source heat pump systems often use vertical boreholes to exchange heat with the ground. Two areas of active research are the development of models to predict the thermal performance of vertical boreholes and improved procedures for analysis of in situ thermal conductivity tests, commonly known as thermal response tests (TRT). Both the models and analysis procedures ultimately need to be validated by comparing them to actual borehole data sets. This paper describes reference data sets for researchers to test their borehole models. The data sets are from a large laboratory “sandbox” containing a borehole with a U-tube. The tests are made under more controlled conditions than can be obtained in field tests. Thermal response tests on the borehole include temperature measurements on the borehole wall and within the surrounding soil, which are not usually available in field tests. The test data provide independent values of soil thermal conductivity and borehole thermal resistance for verifying borehole models and TRT analysis procedures. As an illustration, several borehole models are compared with one of the thermal response tests.  相似文献   

12.
This paper proposed a transient numerical model for a coaxial borehole heat exchanger, which considered the impact of borehole specific heat capacity. The fluid vertical temperature distribution inside the coaxial borehole heat exchanger (BHE) had been predicted based on MATLAB and compared with other transient models. Validated by measured data from a thermal response test, the built model agreed better than other models, especially in short times, with a relative error of 3.63% in 2 hours. Then, the quantitative influences of borehole specific heat capacity and other parameters on thermal performance of borehole heat exchangers were specified.  相似文献   

13.
A thermodynamic analysis was made to study the effect of heat exchanger effectiveness on the performance of single stage vapour absorption heat transformers (VAHT). The working fluid pairs considered were R21-DMF and R21-DMETEG. Variations in the performance parameters such as coefficient of performance, exergetic efficiency, concentration difference and circulation ratio at different values of operating temperatures were studied. Among the two working pairs analysed, the R21-DMF pair yielded a high coefficient of performance and exergetic efficiency, whereas the R21-DMETEG pair yielded a high temperature lift at given operating conditions. The improvements in coefficient of performance and exergetic efficiency with heat exchanger effectiveness were more pronounced for R21-DMF than for R21-DMETEG. Correlations are presented for quick estimation of performance under various operating conditions.  相似文献   

14.
The long-term performance of double U-tube BHE (borehole heat exchanger) fields is investigated by finite element simulations, performed through the software package COMSOL Multiphysics (©COMSOL, Inc.), for grounds in which the effects of groundwater movement are negligible. Six time periodic heat loads with period of 1 year are examined, with either full compensation, or partial compensation or no compensation of winter heating with summer cooling. A single BHE surrounded by infinite ground and the following BHE field configurations are analyzed: a single line of infinite BHEs, two staggered lines of infinite BHEs, a square field of infinite BHEs. For each BHE field configuration, four different distances between adjacent BHEs and two values of the ground thermal conductivity are considered. The undisturbed ground temperature is assumed equal to 14 °C, and −5 °C is prescribed as the lowest allowed temperature for the working fluid. For each BHE field geometry, heat load and ground thermal conductivity, plots of the minimum annual value of the fluid temperature for a period of 50 years are reported, and the pairs “distance – heat load” which keep the fluid temperature above the prescribed limit are evidenced.  相似文献   

15.
The optimization of strategies to operate borehole thermal energy storage systems can play an important role for the exploitation of this technology. Available tools utilized for the design of borehole fields don't consider these aspects in the calculation. For this reason a network-based methodology which gives a sufficient level of detail to describe different system operation strategies has been developed. In particular, the method allows to calculate how the heat is distributed among the borehole heat exchangers in the field according to the way the brine is supplied to the borehole heat storage system. This enables to test the same borehole field configuration pattern for different piping arrangement. An example of application where a simultaneous need of heating and cooling is met by extracting and injecting heat in different region of the ground storage is considered to illustrate the potential of the method.  相似文献   

16.
C.K. Lee  H.N. Lam 《Renewable Energy》2008,33(6):1286-1296
Computer simulation of borehole ground heat exchangers used in geothermal heat pump systems was conducted using three-dimensional implicit finite difference method with rectangular coordinate system. Each borehole was approximated by a square column circumscribed by the borehole radius. Borehole loading profile calculated numerically based on the prescribed borehole temperature profile under quasi-steady state conditions was used to determine the ground temperature and the borehole temperature profile. The two coupled solutions were solved iteratively at each time step. The simulated ground temperature was calibrated using a cylindrical source model by adjusting the grid spacing and adopting a load factor of 1.047 in the difference equation. With constant load applied to a single borehole, neither the borehole temperature nor the borehole loading was constant along the borehole. The ground temperature profiles were not similar at different distances from the borehole. This meant that a single finite difference scheme was not sufficient to estimate the performance of a borefield by superposition. The entire borefield should be discretized simultaneously. Comparison was made between the present method and the finite line source model with superposition. The discrepancies between the results from the two methods increased with the scale of borefield. The introduction of time schedule revealed a discrepancy between the load applied to the ground heat exchanger and that transferred from the borehole to the ground, which was usually assumed to be the same when using analytical models. Hence, in designing a large borefield, the present method should give more precise results in dynamic simulation.  相似文献   

17.
The effects of using different geometrical parameters with the combination of nanofluid on heat transfer and fluid flow characteristics in a helically coiled tube heat exchanger (HCTHE) are numerically investigated. A CuO nanoparticle with a diameter of 25 nm dispersed in water with a particle concentration of 4% was used as the working fluid. The three dimensional governing equations (continuity, momentum and energy) along with the boundary conditions are solved using the finite volume method (FVM). The mass flow rate of water in the annulus was kept constant and the nanofluid flow rate in the inner tube was varied. The effect of flow configuration (parallel and counter) was also examined in this study. The performance of the HCTHE was evaluated in terms of Nusselt number, heat transfer rate, pressure drop, effectiveness and performance index. The results reveal that certain geometrical parameters such as the helix radius and inner tube diameter do affect the performance of the HCTHE under laminar flow conditions. It is also found that counter-flow configuration produced better results as compared to parallel-flow configuration.  相似文献   

18.
Metal hydrides are regarded as one of the most attractive options for thermal energy storage (TES) materials for concentrated solar thermal applications. Improved thermal performance of such systems is vitally determined by the effectiveness of heat exchange between the metal hydride and the heat transfer fluid (HTF). This paper presents a numerical study supported by experimental validation on a magnesium hydride reactor fitted with a helical coil heat exchanger for enhanced thermal performance. The model incorporates hydrogen absorption kinetics of ball-milled magnesium hydride, with titanium boride and expanded natural graphite additives obtained by Sievert's apparatus measurements and considers thermal diffusion within the reactor to the heat transfer fluid for a realistic representation of its operation. A detailed parametric analysis is carried out, and the outcomes are discussed, examining the ramifications of hydrogen supply pressure and its flow rate. The study identifies that the enhancement of thermal conductivity in magnesium hydride has an insignificant impact on current reactor performance.  相似文献   

19.
Borehole heat exchangers are the fundamental component of ground coupled heat pumps, which are now widely employed for energy saving in building heating and cooling. The improvement of the thermal efficiency of Coaxial Borehole Heat Exchangers (CBHEs) is pursued in this paper by investigating the effects of thermal short-circuiting and of flow rate, as well as of the constituent materials and of the geometrical configuration of the CBHE cross section. The analysis is performed by means of finite-element simulations, implemented through the software package COMSOL Multiphysics. The real 2-D axisymmetric unsteady heat transfer problem is modelled, for both winter and summer working conditions, by considering CBHEs with a length of 100 m placed either in a high conductivity or in a low conductivity ground. The results point out that the effects of flow rate and of thermal short-circuiting are both important, and that the latter can be reduced considerably by employing a low conductivity material, such as PPR80, for the inner tube. Finally, it is shown that the performance of the CBHE could be improved, with respect to the commonly used geometry, by increasing the diameter of the inner tube while leaving the outer tube unchanged.  相似文献   

20.
The hydrodynamics and thermal behaviors of the flow in micro-heat exchanger parallel-plate are investigated numerically. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. Effects of different parameters, such as, Knudsen number (Kn), heat capacity ratio (Cr), the effectiveness (e) and number of transfer units (NTU) are investigated. It is found that both the velocity slip and the temperature jump at the walls increase with increasing Kn. On the other hand, at low values of Kn, the NTU increases with increasing Cr, but at high values of Kn the NTU decreases with increasing Cr. With regard to the effect of Cr on e, it is found that increasing Cr leads to a reduction in e and for all Kn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号