首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

An investigation of the effect of Nb on creep properties and creep crack growth rate in a 25Cr–35Ni–0·4C (wt-%) cast steel at 871 and 950°C was carried out. Tensile tests were also carried out at room temperature, 871, and 950°C. The tensile strength and elongation increased with an increase in Nb content at high temperatures. There existed an optimum Nb content for the creep properties and creep crack growth rate. Creep crack growth is controlled by creep deformation.

MST/1222  相似文献   

2.
The room-temperature creep behavior on crack tip of compact tensile (CT) specimen for commercially pure titanium (CP-Ti) was studied by experiment and finite element (FE) simulation in this paper. The experimental results indicated that the time-dependent deformation was observed on the crack tip of CP-Ti CT specimen at room temperature, which agreed with the primary creep, and crack propagation was not observed. In order to consider the creep behavior on crack tip, time-dependent J-integral was used to characterize the stress fields near crack tip. The room-temperature creep behavior on crack tip was analyzed by FE simulation, which was verified by experimental results. Then, the strain fields under different stress states were analyzed by FE simulation. The influences of the locations to crack tip and load on the room-temperature creep were analyzed, which shows that the creep significance on crack tip is enhanced with increasing of load and decreasing of distance to crack tip. The estimation formula of creep strain value along ligament direction of CP-Ti CT specimen was established and verified by FE simulation results.  相似文献   

3.
For power generating equipment subjected to cyclic loading at high temperature, crack growth could arise from the combinations of fatigue and creep processes. There is potential for the material to undergo hardening (or more generally changes of material state) as a consequence of cyclic loading. Results of an experimental study to examine the influence of prior cyclic hardening on subsequent creep deformation are presented for type 316L(N) stainless steel at 600°C. Experiments were also carried out to explore creep crack growth at constant load, and crack growth for intermittent cyclic loading. For the as-received material there is substantial primary creep (hardening) at constant load, while for the cyclically hardened material at constant load the creep curves show recovery, and increasing creep rate with increasing time. Specimens subjected to prior cyclic hardening were also used for a series of creep and creep-fatigue crack growth tests. These tests demonstrated that there was accelerated crack growth compared to crack growth in as-received material.  相似文献   

4.
The interaction between creep deformations and a stationary or growing crack is a fundamental problem in ice mechanics. Knowledge concerning the physical mechanisms governing this interaction is necessary: (1) to establish the conditions under which linear elastic fracture mechanics can be applied in problems ranging from ice-structure interaction to fracture toughness testing; and (2) to predict the ductile-to-brittle transition in the mechanical behavior of ice and, especially, the stability and growth of cracks subjected to crack-tip blunting by creep deformations. This requires a quantitative estimate of the creep zone surrounding a crack-tip, i.e., the zone within which creep strains are greater than the elastic strains.

The prediction of the creep zone in previous ice mechanics studies is based on the theory developed by Riedel and Rice (1980) for tensile cracks in creeping solids. This theory is valid for a stationary crack embedded in an isotropic material obeying an elastic, power-law creep model of deformation and for a suddenly applied uniform far-field tension load that is held constant with time. The deformation of ice at strain-rates ahead of a crack (i.e., 10−6 to 10−2 s−1) is dominated, however, by transient (not steady power-law) creep and the loading, in general, is not instantaneous and constant.

A numerical model is developed in this paper to investigate the role of transient creep and related physical mechanisms in predicting the size, shape and time evolution of the creep zone surrounding the tip of a static crack in polycrystalline ice. The model is based on the fully consistent tangent formulation derived in closed form (Shyam Sunder et al., 1993) and used in the solution of the physically-based constitutive theory developed by Shyam Sunder and Wu (1989a, b) for the multiaxial behavior of ice undergoing transient creep. The boundary value problem involving incompressible deformations ahead of a stationary, traction-free mode I crack in a semi-infinite medium is modeled and solved by a finite element analysis using the boundary layer approach of Rice (1968). This model is verified by comparing its predictions with (i) the known theoretical solutions for the elastic and HRR asymptotic stress and strain fields in an elastic-plastic material of the Ramberg-Osgood type, and (ii) the creep zone size for an isotropic material obeying the elastic power-law creep model of deformation.  相似文献   


5.
在630℃下,对P92钢进行应力控制下的蠕变-疲劳交互作用实验,研究P92钢高温蠕变-疲劳交互作用下的裂纹扩展行为,并结合断口形貌分析蠕变-疲劳裂纹扩展的机理以及a-N曲线的转折点含义。结果表明:P92钢在蠕变-疲劳交互作用下的断裂属于蠕变韧性断裂,应该用(C_t)_(avg)作为裂纹扩展的断裂参量;P92钢在蠕变-疲劳交互条件下,试样的断口主要表现为蠕变孔洞以及微裂纹。此外,发现a-lg(N_i/N_f)曲线以及(da-dN)-N曲线中的拐点,分别对应蠕变-疲劳裂纹萌生区向扩展区转变周次以及扩展区向瞬断区转变的周次。  相似文献   

6.
In large components such as rotors defects due to manufacturing processes have to be taken into account and crack assessments based on findings of non-destructive evaluation are necessary. Approaches are used in remaining life estimations, for example:
• Time Dependent Failure Assessment Diagram (TDFAD),

• Two Criteria Diagram (2CD) and

• Nikbin–Smith–Webster-Model (NSW-Model).

The TDFAD approach is currently being developed within the R5 procedures as an alternative to conventional methods for predicting incubation and the early stages of Creep Crack growth. A key requirement of TDFAD approaches is the evaluation of a time dependent creep toughness, denoted Kc mat. The 2CD approach has been developed independently in Germany to assess Creep crack incubation in ferritic steels. This approach uses crack tip and ligament damage parameters, RK and Rσ, respectively. Furthermore the NSW-Model is employed for the estimation of creep crack initiation by using the creep fracture mechanics parameter C*. Calculations and used parameters were compared for a ferritic 1CrMoV-steel.  相似文献   


7.
This paper compares engineering estimation schemes of C* and creep crack opening displacement (COD) for cylinders with circumferential and axial through‐thickness cracks at elevated temperatures with detailed 3D elastic‐creep finite element results. Engineering estimation schemes include the GE/EPRI method; the reference stress (RS) method where the reference stress is defined based on the plastic limit load; and the enhanced reference stress (ERS) method where the reference stress is defined based on the optimised reference load, recently proposed by the authors. Systematic investigations are made not only on the effect of creep‐deformation behaviour on C* and creep COD, but also on effects of the crack location, the cylinder geometry, the crack length and the loading mode. Comparison of the finite element (FE) results with engineering estimations provides that for idealised power law creep, estimated C* and COD rate results from the GE/EPRI method agree best with FE results, suggesting that published plastic influence functions for plastic J and COD for through‐thickness cracked cylinders are reliable. For general creep‐deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the ERS method provides more accurate and robust estimations for C* and COD rate than the reference stress method. As these two methods differ only in the definition of the reference stress, the ERS method maintains benefits of the reference stress method in terms of simplicity, but improves accuracy of the estimated J, C* and COD results.  相似文献   

8.
A two criteria diagram for creep crack initiation, proposed in 1984, is described. The diagram distinguishes between the two principal damage modes (ligament damage and crack tip damage) and is able to show also the influence of combinations of both modes on creep crack initiation. So it is possible to determine the initiation time of different shallow and deep cracked specimens regarding the loading situation at the crack tip and in the far field (ligament). TTie method was proven by a great number of creep crack initiation results from small scale and large scale specimens as well as of components. The diagram is applied to determine the creep crack initiation time for an intermediate pressure turbine—rotor with a fictitious crack like defect.  相似文献   

9.
By using the crack energy density ε as a creep crack parameter, the initiation condition of creep crack growth was evaluated. The creep tests by the CT specimens of Al alloy were carried out varying the load level, and the corresponding values of crack energy densities were calculated by the finite element analyses based on the εJ-integral, which is path independent without any restriction on the constitutive equation. The characteristics of crack energy densities at the initiation times of creep crack growth were discussed and the initiation condition, in terms of crack energy density, was considered. Through the experiments and analyses, the outstanding results obtained are as follows: (1) The critical value expressed by total crack energy density ε (=, ε 0 + + ε(cr) 0 + : elasto-plastic contribution at the time of load setting, ε(cr): additional part caused by creep deformation) depends on the level of ε 0 + . On the other hand, (2) the critical value expressed by ε(cr) seems to be nearly independent of the level of ε 0 + . Therefore, (3) ε(cr) may be used as a useful parameter for the evaluation of the initiation condition of creep crack growth.  相似文献   

10.
11.
A numerical investigation of the influence of specimen size on creep crack growth in cross‐weld CT specimens with material properties of 2.25Cr1Mo at 550 °C is performed. A three‐dimensional large strain and large displacement finite element study is carried out, where the material properties and specimen size are varied under constant load for a total of eight different configurations. The load level is chosen such that the stress intensity factor becomes 20 MPa √m regardless of specimen size. The creep crack growth rate is calculated using a creep ductility‐based damage model, in which the creep strain rate ahead of the crack tip perpendicular to the crack plane is integrated taking the degree of constraint into account. Although the constraint ahead of the crack tip is higher for the larger specimens, the results show that the creep crack growth (CCG) rate is higher for the smaller specimens than for the larger ones. This is due to much higher creep strain rates ahead of the crack tip for the smaller specimens. If, on the other hand, the CCG rate is evaluated under a constant C * condition, the creep crack growth rate is found to be higher for the larger specimens, except when the crack is located in a HAZ embedded in a material with a lower minimum creep strain rate; then, the creep crack growth rate is predicted to be higher for the smaller specimen. In view of these results, it is obvious that the size effect needs to be considered in assessments of defected welded components using results from CCG testing of cross‐weld CT specimens.  相似文献   

12.
王晴  任晓丹 《工程力学》2023,40(3):225-237
受水化放热的影响,大体积混凝土在早龄期阶段涉及多个物理场作用,极易发生损伤、开裂等不利行为,会对结构服役期内的耐久性和安全性产生严重的影响。针对此问题,该文基于经典损伤理论框架,发展了一类适用于早龄期大体积混凝土的化学-热-力多场耦合模型,综合地反映了早龄期混凝土的开裂、徐变、温度变形、自收缩变形和龄期效应。通过将水化反应方程与热传导方程联立建立了化学-热场耦合作用模型。进而,基于弹塑性损伤理论框架搭建本构关系,引入考虑损伤影响的微观应力-固化理论以刻画混凝土的线性徐变和非线性徐变,根据温度和水化度的变化求解热膨胀变形和自收缩变形,并考虑了随龄期变化的混凝土力学性能的影响。结合相应的显式求解算法,将上述多场耦合模型应用于Maridal涵洞早龄期力学行为的模拟分析,并探究了混凝土徐变变形的影响。计算结果表明:该文模型可以实现对早龄期大体积混凝土开裂过程的准确模拟,对早龄期混凝土受力性能和开裂行为的研究具有一定的参考意义。  相似文献   

13.
Numerical investigation on stable crack growth in plane stress   总被引:2,自引:0,他引:2  
Large deformation finite element analysis has been carried out to investigate the stress-strain fields ahead of a growing crack for compact tension (a/W=0.5) and three-point bend (a/W=0.1 and 0.5) specimens under plane stress condition. The crack growth is controlled by the experimental J-integral resistance curves measured by Sun et al. The results indicate that the distributions of opening stress, equivalent stress and equivalent strain ahead of a growing crack are not sensitive to specimen geometry. For both stationary and growing cracks, similar distributions of opening stress and triaxiality can be found along the ligament. During stable crack growth, the crack- tip opening displacement (CTOD) resistance curve and the cohesive fracture energy in the fracture process zone are independent of specimen geometry and may be suitable criteria for characterizing stable crack growth in plane stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
To clarify the mechanics of time-dependent crack initiation at an interface edge in submicron thick elements due to creep, delamination experiments are conducted using a micro-cantilever bend specimen with a tin/silicon interface edge. After the specimen time-dependently deforms under a constant load, a delamination crack is initiated at the Sn/Si interface edge. In addition, the steady state creep property of Sn is estimated by performing an inverse analysis using a finite element method based on creep deformation experiments conducted for different specimens. Stress analysis using the obtained creep property reveals that stress and strain rate singularities exist at the Sn/Si interface edge under creep deformation. The intensity of the singular field time-dependently increases as the creep region expands, and eventually it becomes a steady state. The stress and strain rate intensities at the steady state correlate well with the crack initiation life, which indicates that the singular stress field near the interface edge governs the creep crack initiation.  相似文献   

15.
Crack propagation rates have been measured under static creep conditions at 565°C in two material conditions of 12%Cr-12%Mo-14%V steel of widely different ductility and matrix creep strength. The controlling parameter for growth was dependent on the ductility of the material and on the mode of deformation. For the quenched low ductility material condition where growth occurred in the absence of significant plasticity the crack propagation data were adequately correlated by the stress intensity factor. Failure of the “creep ductile” specimens occurred essentially by creep rupture of the ligament and failure times were characterised by the ligament stress.  相似文献   

16.
Most structures are mainly fabricated by welding which are likely to be regions of crack initiation and propagation. In such weldment, it is known that the multi-axial stress fields appear due to the plastic constraint induced by the differences in material micro-structure between the weld metal, heat affected zone (HAZ) and base metal. In the present study, the experiments of creep crack growth tests and the structural mechanical analyses of weldment were conducted to understand the effects of stress multi-axiality of weldment on the characteristics of creep crack growth, creep deformation and creep ductility. Additionally, to characterize the time of creep crack initiation up to the start of a brittle type creep crack growth, the distribution of stress multi-axiality (TF) through the base metal, fine-grain HAZ, coarse-grain HAZ to weld metal were investigated.  相似文献   

17.
Abstract

Renewable energy sources are changing the operation mode of conventional power plants significantly. Load changes cause fatigue deformation and damage, where traditionally creep effects dominated. In thick walled components the fatigue is concentrated on the inside (where temperature changes are quickest), but through plastification and stress rearrangement during operation the deformation behaviour of the entire component is affected. In this work, the time and temperature dependent deformation of components is described by finite element analysis based on a viscoplastic deformation Chaboche type model. Creep fatigue damage is evaluated by a mechanism based creep fatigue crack growth model and applied by a post-processor program with automatic load cycle detection. An introduction to verification efforts within the HWT-II test rig (at GKM Mannheim) and by full scale component test (MACPLUS project) are given.  相似文献   

18.
Aspects of combined rate-dependent deformation and crack growth in α-titanium at room temperature are examined. Results are presented for tests carried out on pre-cracked three point loaded single edge notch bend and compact tension specimens subjected to constant crack opening displacement rates and constant load. Curves of the ratio of the reference stress to the yield stress as a function of the ratio of the plastic displacement to specimen width are found to be different for different rates. The stress difference between continuously loaded curves and curves obtained from load relaxation tests (“relaxed” curves) is found to be similar to uniaxial results. Earlier uniaxial tests show that the “relaxed” curve represents a boundary below which no further creep takes place. The pre-cracked specimen constant load curves cross the “relaxed” curve, even though the contribution from crack growth to the overall deformation is found to be small. Sustained load crack growth is observed to take place under contained yielding conditions and the sustained load resistance curves are found to be different for different reference stresses.  相似文献   

19.
We propose an engineering method which permits predicting the creep crack growth rate under neutron irradiation conditions. Theoretical analysis of the creep crack-tip stress-strain state is carried out. Calculations are performed to determine the effect of neutron flux intensity (flux) and pre-irradiation dose (fluence) on the crack growth rate. __________ Translated from Problemy Prochnosti, No. 6, pp. 5–16, November–December, 2006.  相似文献   

20.
Abstract

The effect of primary α content on creep and creep crack growth behaviour of a near α-Ti alloy has been investigated at 600°C. The alloy was heat treated at different temperatures so as to obtain different volume fractions of equiaxed primary α in the range from 5 to 40%. Constant load creep tests were carried out at 600°C in the stress range 250–400 MPa until rupture of the specimens. Creep crack growth tests were carried out at 600°C and at an initial stress intensity level of 25 MPa m1/2. Creep data reveal that minimum creep rate increases and time to rupture decreases with increase in primary α content indicating that higher primary α leads to creep weakening. On similar lines, maximum creep crack growth resistance is associated with the alloy with lowest primary α content (i.e. 5%). Microstructural and fractographic examination has revealed that creep fracture occurs by nucleation, growth and coalescence of microvoids nucleated at primary α/transformed β (matrix) interfaces. On the other hand, creep crack growth occurs by surface cracks nucleated by fracture of primary α particles as well as by growth and coalescence of microvoids nucleated at primary α/transformed β (matrix) interfaces in the interior of the specimen ahead of the crack tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号