首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A fluorescence method is described for the measurement of the rate of exchange of chains between micelles formed by diblock copolymers in aqueous solution. The method requires two samples of the diblock copolymer. One sample is labelled with a Förster donor, the other sample is labelled with a Förster acceptor. Successful application of the method is demonstrated with diblock copolymers composed of polystyrene and poly(ethylene oxide). The donor and acceptor are naphthalene and pyrene, respectively. The label is covalently attached to the copolymers at the junction points between the two blocks. Solutions with micelles are formed independently by the two labelled samples. At the time of mixing of the two solutions, no micelle contains both a donor and an acceptor. Micelles containing both types of labels may be formed at later times as a consequence of the exchange of labelled chains. The efficiency of nonradiative singlet energy transfer from naphthalene to pyrene is measured as a function of time after mixing of the two solutions. At 60° C the rate constant deduced from the time dependence of the fluorescence is on the order 10-5 s-1. At ambient temperature, however, no exchange can be detected, presumably because of the difficulty in extraction of a polystyrene block from the glassy core.  相似文献   

2.
《Polymer》2002,43(13):3735-3741
Three diblock copolymers of poly[N-(2-hydroxypropyl)methacrylamide] (poly(HPMA)) and poly(n-butyl acrylate) (poly(BA)) with varying lengths of blocks were prepared by atom transfer radical polymerization. All copolymers were found to be soluble in dimethylformamide (DMF) and poorly soluble or insoluble in water. In water and mixed DMF/H2O solvents, the copolymers were dispersed in micellar form by controlled addition of water to DMF solutions of copolymers under continuous intensive stirring. The micellar solutions in water were prepared by dialysis of solutions in DMF/H2O (95 vol% of H2O) against water. Solution properties of diblock copolymers of poly(HPMA) and poly(BA) were studied using static and dynamic laser light scattering to characterize the behavior of the copolymers at the supramolecular level. The effects of preparation mode, organic solvent (DMF) and copolymer chemical composition on the formation of micelles were studied. While a slower mixing procedure was optimal for copolymers with short poly(HPMA) blocks, a faster mixing was more suitable for copolymers having longer poly(HPMA) blocks. Finally, the dimensions of micelles in water were evaluated. The most compact micelles were prepared from copolymers having short hydrophilic poly(HPMA) blocks. On the other hand, the copolymer with the longest poly(HPMA) block formed micelles with the smallest size and the lowest density.  相似文献   

3.
The well-defined poly (ε-caprolactone) (PCL)/poly(vinyl pyrrolidone) (PVP) diblock copolymers were synthesized through combining radical polymerization of VP and the controlled coordination-insertion ring-opening polymerization of CL using an aluminum alkoxide macroinitiator formed from the equimolar reaction of triethylaluminum with hydroxy-terminated PVP (PVP-OH). The molecular characterization of PCL/PVP diblock copolymers was confirmed through 1H NMR spectroscopy and GPC analysis. Polymeric micelles composed of PCL as a hydrophobic core and PVP as a hydrophilic shell were prepared by a diafiltration method. The micellar properties such as sizes, shapes, and critical micelle concentrations (CMC) were investigated with a dynamic light scattering (DLS) spectrometer, transmission electron microscope (TEM) and spectrofluorimeter. The sizes of micelles ranged from 30 to 80 nm in average size. The novel micelles formed from the well-defined PCL/PVP diblock copolymers seem to be feasible as novel promising carriers in biomedical and pharmaceutical applications.  相似文献   

4.
Well-defined amphiphilic block copolymers, poly(ethylene glycol) methyl ether-b-poly(styrene) (mPEG-b-PS), in which the PS blocks had different molecular weights, were synthesized by atom transfer radical polymerization (ATRP). Through introduction of selective solvents for the blocks, crystalline and amorphous blocks were self-assembled into different micelle structures in solutions. Atomic force microscopy (AFM) was used to characterize the micelle structures. It was observed that spherical micelles were always formed, whereas lamellar aggregates appeared only in the PS-selective solvent when the molecular weight of the PS block in mPEG-b-PS was low. The crystallizable mPEG blocks were self-assembled into either the core or corona of the micelles formed. The effects of the self-assembled structures on the crystallization behavior of mPEG blocks were then investigated with differential scanning calorimeter (DSC). When the PS molecular weight was much larger than that of mPEG, the result showed that the crystallinity of the mPEG block was lower when mPEG blocks crystallized in the corona than that in the core of the micelles. In this case, when mPEG blocks crystallized in micelle coronae, the micelle core formed by insoluble PS blocks was very big, so mPEG chains had to distribute sparsely in the micelle coronae. It was hard for mPEG chains in one micelle or among different micelles to gather together to crystallize. However, when the PS molecular weight was lower than that of mPEG, the crystallinity of mPEG was higher when the mPEG chains crystallized in the micelle corona, as the core formed by insoluble PS was small and the mPEG chains in the corona were easy to aggregate and crystallize.  相似文献   

5.
A series of well‐defined amphiphilic poly[(2‐hydroxyethyl methacrylate)‐block‐(N‐phenylmaleimide)] diblock copolymers containing hydrophilic and hydrophobic blocks of different lengths were synthesized by atom transfer radical polymerization. The properties of the diblock copolymers and their ability to form large compound spherical micelles are described. Their optical, morphological and thermal properties and self‐assembled structure were also investigated. The chemical structure and composition of these copolymers have been characterized by elemental analysis, Fourier transform infrared, 1H NMR, UV–visible and fluorescence spectroscopy, and size exclusion chromatography. Furthermore, the self‐assembly behavior of these copolymers was investigated by transmission electron microscopy and dynamic light scattering, which indicated that the amphiphilic diblock copolymer can self‐assemble into micelles, depending on the length of both blocks in the copolymers. These diblock copolymers gave rise to a variety of microstructures, from spherical micelles, hexagonal cylinders to lamellar phases. © 2013 Society of Chemical Industry  相似文献   

6.
A series of biodegradable thermo‐sensitive hydrogels were synthesized by ring‐opening polymerization of methoxy‐poly(ethylene glycol) (mPEG) and various ester monomers, i.e. D ,L ‐lactide, glycolide, β‐propiolactone, δ‐valerolactone and ε‐caprolactone. The copolymers were characterized using 1H NMR spectroscopy and gel permeation chromatography. The micelle properties were also measured. The results indicated that the diblock copolymers formed nano‐micelles at low concentrations in aqueous phase. The lower critical solution temperatures of the diblock copolymers were above 35 °C at 1 wt%. As the temperature increased above room temperature, the diblock copolymer solutions underwent a sol‐to‐gel phase transition, which was manifested in viscosity increases, indicative of the formation of a gel. The mPEG–polyester diblock copolymer solutions exhibited sol‐gel transition behavior as a function of temperature and polymer concentration. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Spherical micelles of a series of poly(styrene-block-(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PS-b-PMPCS) rod-coil diblock copolymers in a selective solvent can organize into large mono-layered films with a well-ordered hexagonal packing of the spheres after solvent evaporation. Organized domains in the spherical micelle film were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The core-shell structure of the spherical micelle remained after solvent evaporation. The micelle diameter in the ordered film as observed by TEM and AFM agree. The size of the spherical micelles can be controlled by the length of PMPCS when the length of the PS is fixed. The sphere diameters were varied from several tens of nanometers to more than one hundred nanometers. Solutions of smaller micelle spheres formed less ordered films than those from larger micelle particles. Additionally, monolayer films of cylindrical worm-like micelles were also prepared. Those cylindrical micelles were observed to be end-capped by spherical micelles. The monolayer micelle film from the largest spherical micelles appeared red when observed in optical microscopy in the reflection mode. A broad adsorption peak with a maximum adsorption wavelength of 545 nm was observed via UV-Vis spectroscopy.  相似文献   

8.
Three types of pegylated amphiphilic copolymers of poly(δ‐valerolactone) (PVL) were copolymerized with methoxy poly(ethylene glycol) (MePEG) and poly(ethylene glycol) (PEG4000 and PEG10,000), respectively. Pegylation of PVL allowed copolymers possessing amphiphilic property and efficiently self‐assembled to form micelles with a low critical micelle concentration (CMC) in the range of 10?7–10?8M. The average molecular weight of copolymers was in the range of 10,000–20,000 Da, and the polydispersity of copolymers was about 1.7–1.8. Higher mobility of low molecular weight PEG (i.e., MePEG and PEG4000) than high molecular weight PEG10,000 allowed valerolactone ring opening more efficient in terms of PVL/MePEG and PVL/PEG4000 copolymers possessing longer chain length in hydrophobic domain. Pegylated PVL with low CMC and triblock structure was preferred to encapsulate drug during micelle formation. Although all of these amphiphilic copolymers exhibited controlled release character, the micelles formed by triblock copolymer possessed a more stable core‐shell conformation than that by diblock copolymer, and resulted in the release of drug from triblock micelles slower than that from diblock micelles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1836–1841, 2006  相似文献   

9.
A new amphiphilic 4-arm star-shaped poly(D,L-lactide)/poly(ethyl ethylene phosphate) (ssPLA-b-PEEP) block copolymer was synthesized by ring-opening polymerization of ethyl ethylene phosphate (EEP) with hydroxyl terminated 4-arm star-shaped poly(D,L-lactide) (ssPLA) as a macroinitiator, which was prepared by ring-opening polymerization of D,L-lactide (LA) initiated by pentaerythrite using stannous octoate as catalyst. The structures of the block copolymers were confirmed by IR, 1H-NMR and GPC analysis. Fluorescence measurements were applied to determine the critical micelle concentration (CMC) of the copolymer micelle solutions. The diameter and the distribution of micelles were characterized by dynamic light scattering (DLS) and the shape was perceived by transmission electron microscopy (TEM). The results indicated those copolymers formed nano-micelles in aqueous solution with hydrophobic poly(D,L-lactide) core and hydrophilic poly(ethyl ethylene phosphate) shell. The CMC of the copolymer solutions increased with the increments of the proportion of PEEP segments. TEM images demonstrated that all micelles were spherical.  相似文献   

10.
Thermo-sensitive nanosized structures have been prepared in water from poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) (PMVE-b-PIBVE) block copolymers. The composition and the architecture (diblock and triblock architectures) of the PMVE-b-PIBVE copolymers have been varied. The investigated copolymers had an asymmetric composition with a major PMVE block. While the PIBVE blocks are hydrophobic, the PMVE blocks are hydrophilic at room temperature and become hydrophobic above their demixing temperature (around 36 °C) as a result of the lower critical solution temperature (LCST) behavior. At room temperature, the amphiphilic copolymers aggregate in water above a critical micelle concentration, which has been experimentally measured by hydrophobic dye solubilization. The hydrodynamic diameter of the structures formed above the cmc has been measured by dynamic light scattering (DLS) while their morphology has been studied by transmission electron microscopy (TEM). 1H NMR measurements in D2O at room temperature reveal that the aggregates contain PIBVE insoluble regions surrounded by solvated PMVE chains. These investigations have shown that polydisperse spherical micelles are formed for asymmetric PMVE-b-PIBVE copolymers containing at least 9 IBVE units. For copolymers containing less IBVE units, loose aggregates are formed.Finally, the thermo-responsive, reversible properties of these structures have been investigated. Above the cloud point of the copolymers, the loose aggregates precipitate while the micelles form large spherical structures.  相似文献   

11.
Summary The polymerization of ε–caprolactone (CL) in the presence of HCl·Et2O via activated monomer mechanism was performed to synthesize diblock copolymers composed of methoxy polyethyleneglycol (MPEG) and poly(ε–caprolactone) (PCL). The obtained PCLs had molecular weights close to the theoretical values calculated from the CL to MPEG molar ratios and exibited monomodal GPC curves. We successfully prepared MPEG and PCL diblock copolymers by activated monomer mechanism. The micellar characterization of MPEG-PCL diblock copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering, AFM and fluorescence techniques. The diblock copolymers formed micelles with a critical micelle concentration (CMC) ranging 2.07×10-2–1.16×10-3 mg/mL depended on the block lengths of diblock copolymers. The diameters of micelles, measured by dynamic light scattering, were 100–250 nm. Most micelles exhibited a spherical shape in AFM.  相似文献   

12.
A series of monomethoxy poly(ethylene glycol)–poly(lactide) (mPEG–PLA) diblock copolymers were designed according to polymer–drug compatibility and synthesized, and mPEG–PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.  相似文献   

13.
A series of poly[2-(diisopropylamino)ethyl methacrylate]-block-poly[2-(N-morpholino)ethyl methacrylate], [PDPA-b-PMEMA], have been synthesized by using group transfer polymerization. These novel PDPA-b-PMEMA diblock copolymers dissolved molecularly in aqueous solution at low pH (<6.0) due to the protonation of all tertiary amine residues of both blocks and formed PDPA-core micelles at pH 7.5 by PMEMA block forming the micelle coronas. On the other hand, it was also observed that these diblock copolymers formed near-monodisperse ‘reverse micelles’, PMEMA-core micelles, in n-alkanes with or without requiring cosolvent depending on comonomer ratios. Dynamic light scattering studies indicated monodisperse or near-monodisperse micelles in both cases. The intensity-average radii of the PDPA-core and the PMEMA-core micelles were between 10 nm and 17 nm (polydispersity index, μ2/Γ2 < 0.08) and between 10 nm and 13 nm in n-hexane (μ2/Γ2 < 0.09), respectively.  相似文献   

14.
Summary The diblock copolymers poly(10-hydroxydecanoic acid)-block-polystyrene (PHDA-b-PSt) were synthesized by combining enzymatic condensation polymerization of 10-hydroxydecanoic acid (HDA) and atom transfer radical polymerization (ATRP) of styrene (St). PHDA was firstly obtained via enzymatic condensation polymerization catalyzed by Novozyme-435. Subsequently one end of poly(10-hydroxydecanoic acid) (PHDA) chains was modified by reaction with α-bromopropionyl bromide and the other was protected by chlorotrimethylsilane (TMSCL), respectively, the resulting monofunctional macroinitiator was used in the ATRP of St using CuCl/2,2-bipyridine (bpy) as the catalyst system to afford the diblock copolymers including biodegradable PHDA blocks and well-defined PSt blocks.  相似文献   

15.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Novel functionalized nanoporous polymeric materials could be derived from poly(D,L-lactide)-block-polystyrene (PLA-b-PS) diblock copolymers with a sulfonyl group at the junction between both blocks were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) using a synthetic difunctional initiator through a three-step sequential methodology. Different ω-bromo PLA polymers with various molar masses ranging from 3640 to 11,440 g mol−1 were first produced by coupling ω-hydroxy PLA precursors to a chlorosulfonyl-functionalized ATRP initiator previously prepared, thus leading to the formation of suitable macroinitiators for the subsequent ATRP polymerization of styrene. Consequently, PLA-b-PS diblock copolymers were obtained with a finely tuned PLA volume fraction (fPLA) in order to develop a microphased-separation morphology. The resulting copolymers as well as the intermediate compounds were carefully analyzed by size exclusion chromatography and 1H NMR. Upon shear flow induced by a channel die processing, oriented copolymers were generally afforded as characterized by small-angle-X-ray scattering (SAXS). Such copolymers were finally submitted to mild alkaline conditions so as to hydrolyze the sacrificial PLA block, and the presence of the sulfonic acid functionality on the pore walls of the resulting nanoporous materials was evidenced by means of a post-modification reaction consisting in the corresponding sulfonamide formation.  相似文献   

17.
Dually responsive amphiphilic diblock copolymers consisting of hydrophilic poly(N‐isopropyl acrylamide) [poly(NIPAAm)] and hydrophobic poly(9‐anthracene methyl methacrylate) were synthesized by reversible addition fragmentation chain‐transfer (RAFT) polymerization with 3‐(benzyl sulfanyl thiocarbonyl sulfanyl) propionic acid as a chain‐transfer agent. In the first step, the poly(NIPAAm) chain was grown to make a macro‐RAFT agent, and in the second step, the chain was extended by hydrophobic 9‐anthryl methyl methacrylate to yield amphiphilic poly(N‐isopropyl acrylamide‐b‐9‐anthracene methyl methacrylate) block copolymers. The formation of copolymers with three different hydrophobic block lengths and a fixed hydrophilic block was confirmed from their molecular weights. The self‐assembly of these copolymers was studied through the determination of the lower critical solution temperature and critical micelle concentration of the copolymers in aqueous solution. The self‐assembled block copolymers displayed vesicular morphology in the case of the small hydrophobic chain, but the morphology gradually turned into a micellar type when the hydrophobic chain length was increased. The variations in the length and chemical composition of the blocks allowed the tuning of the block copolymer responsiveness toward both the pH and temperature. The resulting self‐assembled structures underwent thermally induced and pH‐induced morphological transitions from vesicles to micelles and vice versa in aqueous solution. These dually responsive amphiphilic diblock copolymers have potential applications in the encapsulation of both hydrophobic and hydrophilic drug molecules, as evidenced from the dye encapsulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46474.  相似文献   

18.
Well‐defined AB and BA diblock copolymers were obtained by a one‐pot two‐step sequential block copolymerization by reverse iodine transfer polymerization (RITP), A being a poly(styrene) block and B a poly(butyl acrylate) block. High monomer conversions during the formation of the first block avoided the purification steps before growing the second block. In a third sequential step, the diblock copolymers were further extended to synthesize ABA and BAB triblock copolymers. Furthermore, the synthesis of ABA and BAB copolymers in only two steps by RITP was investigated starting with the formation of the central block using 2,5‐di(2‐ethylhexanoylperoxy)‐2,5‐dimethylhexane as a difunctional initiator and then resuming the polymerization to grow the external blocks in a second step. The obtained copolymers were analyzed by size exclusion chromatography, transmission electron microscopy, and differential scanning calorimetry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Solutions of polystyrene-block-poly(ethylene/propylene) and polystyrene-block-poly(ethylene/butylene)-block-polystyrene copolymers in 5-methyl-2-hexanone and 4-methyl-2-pentanone were studied by size exclusion chromatography. The association equilibrium was studied shifting from micelles to free copolymer chains by increasing the temperature. A remarkable tailing was observed in diblock copolymer micelle peaks that may be explained by the disturbance and restablishment of the association equilibrium during separation in the chromatographic column. This phenomenon was very small for triblock copolymers. In this case, micelle hydrodynamic volumes obtained from SEC curves were compared to those calculated from light scattering and viscosity measurements. The data agreement was very good. Comicellization was analysed by mixing two different micelle solutions and injecting the solution mixture at different elapsed times. The SEC curves showed an intermediate peak corresponding to mixed micelles. The results show that three micelle species coexist in solution during the first period after mixing, which suggests that comicellization proceeds via dissociation of pure micelles and association of both copolymer free chains to form uniform mixed micelles.  相似文献   

20.
Micellization in water of polystyrene–poly(ethylene oxide) diblock copolymers is achieved by the stepwise dialysis technique in order to prepare micellar solutions for copolymers with a wide range of molecular parameters. Hydrodynamic radii, determined by quasielastic light scattering, are correlated with the molecular parameters, e.g. molecular weight and composition, and compared with the theory. Two couples of phenanthrene and anthracene labelled copolymers are used to prepare micellar solutions by mixing them before and after dialysis. The non radiative energy transfer is determined on these solutions to prove that polystyrene-poly(ethylene oxide) diblock copolymers micelles in water are "frozen" micelles even when heated near the Tg of polystyrene. Received: 3 November 1997/Revised version: 1 December 1997/Accepted: 2 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号