首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
α-Al2O3为原料, 采用碳热还原氮化法合成AlON粉体, 利用活性炭和亚微米碳粉改变球磨后一次粉体(α-Al2O3和C混合粉体)的形核密度, 并研究形核密度对AlON粉体相组成、形貌及其透明陶瓷透光性的影响。结果表明, 形核密度不同的一次粉体在1750℃保温60 min均能合成纯相AlON粉体, 但是所合成的两种AlON粉体形貌和性能差异较大。高形核密度下(添加活性炭)合成的AlON粉体形貌不规则、结构疏松且晶粒较小, 并易于球磨获得细颗粒粉体(~0.93 μm); 而低形核密度下(添加亚微米碳粉)合成的AlON粉体整体形貌呈近球形, 晶粒发育较完整, 且尺寸较大, 该粉体球磨后颗粒尺寸较大(~2.13 μm)。因此, 形核密度是影响AlON粉体形貌、结构特征和破碎性的主要因素。研究结果表明, 高形核密度粉体合成的AlON粉体具有更好的烧结活性, 它在1880℃保温150 min获得的透明陶瓷最大红外透过率达76.5% (3 mm厚), 比低形核密度粉体制备的透明陶瓷提高48.3%。因此, 以α-Al2O3为原料时, 提高形核密度有利于制备颗粒较小的高活性AlON粉体, 该粉体适合制备高透过率AlON透明陶瓷。  相似文献   

2.
以γ-Al2O3为原料,炭黑(C)为还原剂,通过碳热还原氮化(carbothermal reduction and nitridation,CTRN)工艺合成了氮氧化铝(AlON)粉体,并通过气压烧结工艺制备了AlON透明陶瓷.借助X射线衍射分析研究了反应温度、保温时间及碳用量对CTRN反应产物相组成的影响,借助电子探针研究了AlON透明陶瓷的微观结构.研究结果表明:该反应主要受热力学控制,动力学因素也具有重要作用,反应温度和保温时间对AlON粉体的合成均具有重要影响.在1300℃时,开始发生CTRN反应;随着反应温度的升高,AlN的生成量逐渐增加;在1650℃时,开始形成AlON;在1700℃时,AlON的CTRN合成反应基本完成,产物中除含有极少量的AlN外,其余均为AlON相;进一步提高反应温度至1750℃,产物中残余AlN的量有所减少,但不能完全消除.采用CTRN工艺制备的粉体为原料,经1950℃高温气氛反应6h可制备出AlON透明陶瓷,材料微观结构致密、均匀,平均晶粒尺寸约50μm。  相似文献   

3.
透明AlON具有优异的光学和力学性能,应用前景广阔。但材料制备成本高昂,限制了其应用发展。为解决上述问题,本研究以透明AlON的凝胶浇注成型与无压烧结制备为核心目标,就AlON细粉的低温合成及其抗水化处理展开重点研究。研究发现以有机聚合物包覆AlN/Al2O3为原料,通过高温碳热–氮化工艺合成AlON,可有效降低AlON的合成温度,在1700℃即可合成近乎纯相的AlON粉体。所得粉体颗粒尺寸细小,在亚微米级。通过对上述粉体进行聚氨酯包覆表面抗水化处理,可大幅度提升其抗水化性能。即使历经长达72 h水中静置,也不发生明显的水解。以此为基础,通过凝胶浇注成型结合生坯的冷等静压后处理在1820~1850℃成功实现了透明AlON陶瓷的无压烧结制备。材料力学和光学性能优异,其中1850℃烧结试样在紫外–中红外波段直线透过率达到83.1%~86.2%,三点抗弯强度达到310 MPa。  相似文献   

4.
以纳米γ-Al2O3和活性炭为原料,采用碳热还原法合成AlON粉体,研究原料粉末在行星式球磨机上的球磨时间对合成粉体物相组成的影响规律。结果表明,在2~24 h内混合原料粉末时,延长原料粉末的球磨时间可有效细化活性炭,提高混合粉末的比表面积,提高Al2O3和活性炭混合的均匀性,有利于纯相AlON粉体的合成,而对于球磨时间较短的原料粉末,可以通过提高烧结温度或延长保温时间促进AlON相形成。经24 h球磨的原料粉末在1 750℃碳热还原60min获得的纯相AlON粉体,在1 880℃无压烧结制备了最大红外透过率为81%的AlON透明陶瓷(3 mm厚样品)。  相似文献   

5.
采用微米级Al粉和纳米级Al2O3粉为原料,在N2气氛保护下球磨混合后煅烧,通过改变煅烧温度(1650~1800℃),分别在流动/静态N2气氛下进行了AlON粉体的合成.利用XRD对合成的粉体进行物相分析,通过Rietveld 全谱拟合研究了AlON粉体的品格常数的变化情况,并用SEM观察粉体的微观形貌.结果表明:随温度增加,AlON粉体的合成反应热力学受气氛影响明显,流动N2下1750℃时可合成纯相AlON粉体,而在静态N2下1800℃才能合成纯相AlON粉体,因此流动N2气氛有利于降低纯相AlON粉体的合成温度.另外,本方法合成的AlON粉体存在表内层颜色差异现象,表层AlON粉体相对内层的AlON粉体其品格常数较小.分析认为,造成粉体颜色差异的主要原因可能是在高温及气氛影响下表层粉体产生较多阴离子热缺陷.  相似文献   

6.
晶粒可控钛酸钡致密陶瓷的制备及表征   总被引:2,自引:0,他引:2  
采用超重力反应沉淀法制备的纳米钛酸钡粉体和常规陶瓷工艺,通过控制烧结温度在 1200 ~1300℃,分别制备了晶粒尺寸 0.45~2.2μm的致密陶瓷。实验结果表明超重力反应沉淀法制备的粉体具有良好的烧结和介电性能。烧结温度为 1200℃时,相对密度即可达到95%,晶粒尺寸为 0.45μm,随烧结温度的升高,晶粒逐渐长大,未出现晶粒的异常长大现象,到1300℃相对密度和晶粒尺寸分别达到 97.7%和2.2μm。钛酸钡陶瓷介电性能有明显的粒度效应,晶粒在1.2μm左右时,室温介电常数达到最大(4143)。由于晶粒内部立方相成分的出现,包含更细晶粒的陶瓷(d=0.45μm)呈现低的介电常数。  相似文献   

7.
文钰斌  刘新红  顾强  陈晓雨  贾全利  杨林  马腾 《材料导报》2017,31(18):109-113, 118
以硝酸铝、硝酸锌和柠檬酸为原料,以炭黑和酚醛树脂为碳源,采用溶胶-凝胶法制备了纳米锌铝尖晶石粉体,研究了高温还原气氛下不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响,并以高温氧化气氛热处理、无碳引入的试样作对比。研究表明:在还原气氛下,引入碳源的试样在600℃热处理后,锌铝尖晶石峰不明显,主要是因为碳起空间位阻作用,阻碍了离子传质;800℃热处理后可合成锌铝尖晶石,且纳米颗粒尺寸较小(20~30nm);热处理温度升高至1 000℃时,纳米锌铝尖晶石颗粒尺寸变化不大,碳的空间位阻作用抑制了颗粒长大和烧结。与炭黑相比,酚醛树脂抑制锌铝尖晶石颗粒长大的效果更好,可能因为树脂碳化后呈玻璃态,空间阻隔作用更强。但热处理温度不低于1 200℃时,纳米锌铝尖晶石易被CO或C还原,锌以Zn(g)的形式逸出,只有α-Al2O3相。然而,在空气气氛下,600℃热处理后即可合成纳米锌铝尖晶石,但热处理温度从600℃升至800℃时,锌铝尖晶石颗粒长大较明显,颗粒尺寸从27.5nm增至54.6nm,并呈烧结状。  相似文献   

8.
SPS制备亚微米晶氧化铝陶瓷   总被引:2,自引:0,他引:2  
以商业α-Al2O3粉体为原料, MgO为烧结助剂, 采用放电等离子烧结技术(SPS)制备亚微米晶氧化铝陶瓷. 系统研究了烧结温度、烧结助剂含量对亚微米晶氧化铝陶瓷的致密化过程及显微结构的影响. 分析结果表明, 1250℃以及0.05wt%分别是最佳的烧结温度和烧结助剂含量; 在此条件下获得的亚微米晶氧化铝陶瓷, 其相对密度达到99.8%TD(theoretical density),平均晶粒尺寸约0.68μm,显微硬度(HV5)达到20.75GPa,在3~5μm中红外范围内直线透过率超过83%. 当MgO掺杂量超过0.1wt%时, 第二相MgAl2O4形成, 引起光散射, 降低红外透过率.  相似文献   

9.
孙文周 《材料导报》2016,30(10):113-116, 138
采用固相反应法合成γ-AlON粉体,并利用无压烧结制备γ-AlON透明陶瓷。重点研究了MgO、Y_2O_3添加剂的引入对固相反应合成γ-AlON粉体的合成温度、物相组成的影响及其规律,并尝试性地探讨其反应机理。结果表明,MgO的加入可以起到降低反应温度的作用,使AlON的合成温度降低至1500℃,且合成产物物相纯度较高;而Y_2O_3的添加会促进氮化,使原料中的Al2O3被显著氮化。在此基础之上,以添加MgO的γ-AlON合成粉体为原料进行烧结致密化,并优化了烧结工艺。测试结果表明,在最佳烧结工艺下制备的样品致密度高,在2.5~6μm的红外波段内可透光,最高透过率可达22.12%。  相似文献   

10.
凝胶冷冻干燥法制备透明氧化钇陶瓷   总被引:1,自引:0,他引:1  
采用凝胶冷冻干燥法, 在--50℃、8Pa的真空度下制备了碱式硝酸钇前驱体. 干燥后前驱体呈疏松片状堆积, 比烘箱干燥样品具有更为清晰的轮廓. 经过1100℃煅烧后, 凝胶冷冻干燥处理的粉体具有较细的颗粒, 颗粒尺寸分布均一, 并且具有较大的比表面积. 该粉体经过干压型, 于1700℃真空保温4h烧结后得到晶粒大小均匀的致密多晶透明陶瓷, 平均晶粒尺寸在40μm左右, 样品相对密度达99.6%. 样品经抛光后可见光400nm波长透过率达60%, 并且在紫外波段也具有类似于氧化钇单晶的高透过率.  相似文献   

11.
张传杰  颜超  刘云  崔莉  朱平 《材料工程》2016,(12):54-60
分别以蒸馏水、无水乙醇为过程控制剂,采用机械球磨法制备壳聚糖微细粉体,研究过程控制剂的种类和添加量对其产率、粒径分布、微观形貌、黏均分子量、化学结构、结晶结构以及热性能的影响。结果表明:采用无水乙醇为过程控制剂效果最好,当乙醇用量为0.75mL/g时,壳聚糖粉体的产率最高,从25%提高到94.7%,而且得到的壳聚糖粉体的粒径分布集中,D50为824nm,D90为1629nm。采用乙醇为过程控制剂制备的壳聚糖微细粉体未发生衍生化反应,但是其黏均分子量下降了23%,结晶结构受到部分破坏,热稳性变差。  相似文献   

12.
彩色氧化锆陶瓷具有鲜艳色彩、高折射率、耐磨损、耐腐蚀及对人体无毒等优点, 被广泛应用于电子、装饰等领域。本研究采用共沉淀法合成了平均粒径为15.9 nm的立方相Ce:8YSZ纳米粉体。以经过800 ℃煅烧4 h的粉体为原料, 通过两步烧结技术制备了具有高光学透过率和高红色度的Ce:8YSZ透明陶瓷,并系统研究了空气预烧温度对红色Ce:8YSZ透明陶瓷微观结构、直线透过率和色度的影响。当预烧温度从1200 ℃升高到1300 ℃时, Ce:8YSZ陶瓷的平均晶粒尺寸从0.3 μm增大到2.2 μm, 同时相对密度从87.2%增加到97.1%。经过1275 ℃空气预烧2 h并结合1700 ℃热等静压烧结3 h所得的Ce:8YSZ透明陶瓷表现出最佳的光学质量和最大的红色度值, 在700 nm处的直线透过率为47.6%, 红色度为52.0。  相似文献   

13.
Yb:YAG透明陶瓷由于具有宽的吸收带和发射带、高增益、低的热负载、长的荧光寿命、高的量子效率等优点而成为有应用前景的高功率固体激光器用增益介质。本研究优化了粉体的性能并制备了高透明的Yb:YAG陶瓷。以碳酸氢铵为沉淀剂, 分别以纯水或乙醇/水混合物为溶剂, 采用共沉淀法合成了5at%Yb:YAG纳米粉体。在1250 ℃下煅烧4 h得到的所有粉体均为纯YAG相。与纯水溶剂制备的粉体相比, 醇水溶剂制备的粉体具有更小的平均晶粒尺寸和更低的团聚程度。以醇水溶剂制备的粉体为原料, 采用真空烧结法在不添加烧结助剂的情况下成功制备了5at%Yb:YAG透明陶瓷, 并对1500~1825 ℃烧结20 h和1800 ℃烧结10~50 h所得陶瓷的微观结构和直线透过率进行了探究。除在1825 ℃下烧结20 h所得的陶瓷外, 其余的5at%Yb:YAG陶瓷都具有均匀的微观结构。在1800 ℃下烧结50 h制备的5at%Yb:YAG陶瓷具有最高的光学质量, 在1100和400 nm处的直线透过率分别为78.6%和76.7%(样品厚度为2.2 mm)。该Yb:YAG透明陶瓷在937 nm处的吸收截面为5.03×10-21 cm2, 在1031 nm处的发射截面为13.48×10-21cm2。  相似文献   

14.
透明YAG多晶陶瓷具有优良的光学、力学与化学性能,逐渐成为新一代固体激光基质材料。分散均匀、团聚轻的纳米粉体有利于制备出高度透明的激光陶瓷。以Y2O3、Al(NO3)3·9H2O和柠檬酸为原料,采用柠檬酸凝胶燃烧法制备出黑色粉体,经1100℃烧结出尺寸小于50nm的YAG粉体。采用TG-DTA、XRD、FT-IR和TEM测试手段对YAG纳米粉体进行表征,采用谢莱公式计算出不同烧结温度下的晶粒尺寸。研究结果表明:YAG的析晶温度范围为850~900℃,烧结过程中出现赝YAG相物质,1050℃转变成纯YAG相,随着热处理温度的升高,晶粒呈线性增长,纳米粉体的TEM尺寸和采用谢莱公式计算的结果相一致。  相似文献   

15.
利用溶胶-凝胶法制备CaCu3Ti4O12粉体,采用差热分析、X射线衍射、扫描电子显微镜等技术进行表征,并探讨CaCu3Ti4O12粉体的烧结特性及电性能。结果表明,干凝胶经750℃低温煅烧可获得粒径分布较窄、平均粒径为80~100 nm的CaCu3Ti4O12粉体。CaCu3Ti4O12陶瓷在1 000℃时实现致密烧结,比固相反应法制备的粉体烧结温度降低100~200℃,具有较宽的烧结温区。溶胶-凝胶法制备的陶瓷经1 050℃烧结2 h,获得优良的电性能,相对介电常数为20 190,介电损耗为0.022,非线性系数为4.530。  相似文献   

16.
以硝酸钇(Y(NO3)3)和氯化铪(HfCl4)为原料, 乙二胺四乙酸(EDTA)作为燃剂, 采用燃烧法制备了粒径为50nm左右的纯相铪酸钇粉体. 粉体经1200℃煅烧后高能球磨15h, 然后在200MPa条件下进行冷等静压成型, 素坯尺寸为20mm×2.5mm, 最后采用真空烧结(1850℃保温6h), 制备出可见光波段直线透过率为50%的铪酸钇透明陶瓷. 研究了真空烧结温度对样品透过率和显微结构的影响, 当烧结温度高于1850℃时, 温度对于透过率影响不是很明显; 随着烧结温度的升高, 样品的晶粒尺寸增大.  相似文献   

17.
两步烧结法合成钇铝石榴石透明陶瓷   总被引:1,自引:0,他引:1  
用共沉淀法制备的平均粒径为50nm的钇铝石榴石纳米粉体为原料, 以0.5wt%的正硅酸已脂为烧结助剂, 采用两步烧结的工艺路线制备了YAG透明陶瓷. 将成型后的素坯在真空炉内首先加热到一个较高的温度(1700~1800℃), 再快速降温至较低温度(1500~1600℃), 并在此较低温度下保温10h. 通过抑制晶界迁移, 促进晶界扩散, 在较低的保温温度下制备了YAG透明陶瓷. 当两步烧结温度分别为1800℃和1550℃时, YAG透明陶瓷在可见光下的透过率为72%, 晶粒尺寸为6μm.  相似文献   

18.
利用高能球磨法制备Sb_2O_3粉末,采用聚乙二醇-6000、十二烷基硫酸钠和OP-10对Sb_2O_3粉末进行表面改性,研究不同表面活性剂改性的Sb_2O_3颗粒对PVC复合材料体系阻燃性能的影响。运用X射线衍射仪(XRD)、透射电子显微镜(TEM)对Sb_2O_3的物相组成、颗粒形貌、平均粒径进行表征,利用X射线能量色散谱仪(EDS)、极限氧指数仪以及垂直燃烧实验分别对Sb_2O_3/PVC复合材料的粒子分布、阻燃性能进行研究。结果表明:当聚乙二醇-6000作为表面活性剂时,由于纳米Sb_2O_3粒子表面有机膜空间位阻效应较大,使得纳米Sb_2O_3在PVC基体中表现出良好的分散性。当纳米Sb_2O_3添加量为1.26%(质量分数,下同)时,PVC复合材料的氧指数为27.1%,材料处于难燃级别;当采用十二烷基硫酸钠和OP-10作为表面活性剂时,Sb_2O_3颗粒表面包覆效果差,Sb_2O_3颗粒粒径分别为100nm和150nm,Sb_2O_3在PVC基体中分散性变差,并出现团聚现象。当Sb_2O_3添加量为1.26%时,PVC复合材料的氧指数分别为24.7%和25.3%,材料未达到难燃级别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号