首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Siva Sarathy 《Water research》2010,44(14):4087-6140
The advanced oxidation process utilizing ultraviolet and hydrogen peroxide (UV/H2O2) is currently applied in commercial drinking water applications for the removal of various organic pollutants. Natural organic matter (NOM) present in the source water can also be oxidized and undergo changes at the fluence and H2O2 concentrations applied in commercial drinking water UV/H2O2 applications (fluences less than 2000 mJ cm−2, initial H2O2 concentrations less than 15 mg L−1). In this study, the impact of UV/H2O2 on NOM’s aromaticity, hydrophobicity, and potential to form trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated for raw surface water and the same water with the very hydrophobic acid (VHA) fraction of NOM removed. During UV/H2O2 treatments, NOM in the raw surface water was partially oxidized to less aromatic and hydrophobic characteristics, but was not mineralized, confirming findings from past research. Below fluences of 1500 mJ cm−2 UV/H2O2 treatment of the raw water did not lead to reduction in the formation potential of THMs. The formation potential of HAAs was reduced at a fluence of 500 mJ cm−2 with only small additional reductions as fluence further increased. For the water from which the VHA fraction was removed, UV/H2O2 treatment led to mineralization of NOM suggesting that, when coupled with a pre-treatment capable of removing the VHA fraction, UV/H2O2 could achieve further reductions in NOM. These subsequent reductions in NOM led to continuous reductions in the formation potentials of THMs and HAAs as fluence increased.  相似文献   

2.
Drinking water sources in many regions are subject to proliferation of toxic cyanobacteria (CB). Chlorination of source water containing toxic cyanobacterial cells for diverse treatment purposes might cause cell damage, toxin release and disinfection by-products (DBP) formation. There is limited information available on chlorination of different toxic CB cells and DBP formation potentials. This work: (1) determines the extent of lysis and toxins/taste and odor compound release in chlorinated natural water from CB cells (Anabaena circinalis, Microcystis aeruginosa, Cylindrospermopsis raciborskii, and Aphanizomenon issatsckenka) from laboratory cultures and natural blooms; (2) assesses the rates of oxidation of toxins by free chlorine under environmental conditions; (3) studies the DBP formation associated with the chlorination of CB cell suspensions. With chlorine exposure (CT) value of <4.0 mg min/L >60% cells lost viability causing toxin release. Cell membrane damage occurred faster than oxidation of released toxins. Kinetic analysis of the oxidation of toxins in natural water revealed significant differences in their susceptibility to chlorine, saxitoxins being the easiest to oxidize, followed by cylindrospermopsin and microcystin-LR. Furthermore, concentrations of trihalomethanes and haloacetic acids (<40 μg/L) and N-nitrosodimethylamine (<10 ng/L) as chlorination by-products were lower than the guideline values even at the highest CT value (220 mg min/L). However, the DBP concentrations in environmental bloom conditions with very high cell numbers were over the guideline values.  相似文献   

3.
A number of water treatment works (WTW) in the north of England (UK) have experienced problems in reducing the dissolved organic carbon (DOC) present in the water to a sufficiently low level. The problems are experienced in autumn/winter when the colour increases and the coagulant dose at the WTW needs to be increased in order to achieve sufficient colour removal. However, the DOC content of the water varies little throughout the year. To investigate this further, the water was fractionated using resin adsorption techniques into its hydrophobic (fulvic and humic acid fractions) and hydrophilic (acid and non-acid fractions) components. The fractionation process yields useful information on the changing concentration of each fraction but is time consuming and labour intensive. Here, a method of rapidly determining fraction concentration was developed using fluorescence spectroscopy. The model created used synchronous spectra of fractionated material compared against bulk water spectra and predicted the fraction concentrations to within 10% for a specific water. The model was unable to predict fraction concentrations for waters from a different watershed.  相似文献   

4.
The formation of disinfection by-products (DBPs) is a public health concern. An important way to evaluate the presence of DBPs is in terms of the total organic halogen (TOX), which can be further specified into total organic chlorine (TOCl), bromine (TOBr), and iodine (TOI). The formation and distribution of halogen-specific TOX during chlorination and chloramination of natural organic matter (NOM) isolates in the presence of bromide and iodide ions were studied. As expected, chloramination produced significantly less TOX than chlorination. TOCl was the dominant species formed in both chlorination and chloramination. TOI was always produced in chloramination, but not in chlorination when high chlorine dose was used, due to the limited presence of HOI in chlorination as a result of the oxidation of iodide to iodate in the presence of excess chlorine. The formation of TOI during chloramination increased as the initial iodide ion concentration increased, with a maximum of ∼60% of the initial iodide ion becoming incorporated into NOM. Iodine incorporation in NOM was consistently higher than bromine incorporation, demonstrating that the competitive reactions between bromine and iodine species in chloramination favoured the formation of HOI and thus TOI, rather than TOBr. Correlations between the aromatic character of the NOM isolates (SUVA254 and % aromatic C) and the concentrations of overall TOX and halogen-specific TOX in chloramination were observed. This indicates that the aromatic moieties in NOM, as indicated by SUVA254 and % aromatic C, play an important role in the formation of overall TOX and halogen-specific TOX in chloramination. THMs comprised only a fraction of TOX, up to 7% in chloramination and up to 47% in chlorination. Although chloramine produces less TOX than chlorine, it formed proportionally more non-THM DBPs than chlorine. These non-THM DBPs are mostly unknown, corresponding to unknown health risks. Considering the higher potential for formation of iodinated DBPs and unknown DBPs associated with the use of chloramine, water utilities need to carefully balance the risks and benefits of using chloramine as an alternative disinfectant to chlorine in order to satisfy guideline values for THMs.  相似文献   

5.
Absorbance spectra of fractions of natural organic matter (NOM) with varying apparent molecular weights (AMWs) were examined in this study. Size exclusion chromatography (SEC) was employed to obtain AMW distributions for three Australian water sources which represented low- and high-dissolved organic carbon (DOC) surface waters and a source with highly degraded NOM. These waters were coagulated with alum and other coagulants. Effects of coagulation on AMW distributions were quantified based on an absorbance slope index (ASI) calculated using NOM absorbance measured at 220, 230, 254 and 272 nm. This index can be calculated for any AMW fraction of NOM. Similarly to SUVA254, ASI values decrease consistently in coagulated waters and are correlated with trihalomethane yields. Comparison of ASI indexes in different water sources indicates the presence of both common trends and differences indicative of NOM site-specificity.  相似文献   

6.
Duirk SE  Valentine RL 《Water research》2006,40(14):2667-2674
A kinetic model was developed to predict dichloroacetic acid (DCAA) formation in chloraminated systems. Equations describing DCAA formation were incorporated into an established comprehensive monochloramine-natural organic matter (NOM) reaction model. DCAA formation was theorized to be proportional to the amount of NOM oxidized by monochloramine and described by a single dimensionless DCAA formation coefficient, theta(DCAA) (M(DCAA)/M(DOC(ox)). The applicability of the model to describe DCAA formation in the presence of six different NOM sources was evaluated. DCAA formation could be described by considering a single NOM source-specific value for theta(DCAA) over a wide range of experimental conditions (i.e., pH, NOM, free ammonia, and monochloramine concentrations). DCAA formation appears to be directly proportional to the amount of active chlorine (monochloramine and free chlorine) that reacted with the NOM under these experimental conditions. Values of theta(DCAA) for all six NOM sources, determined by nonlinear regression analysis, varied from 6.51 x 10(-3) to 1.15 x 10(-2) and were linearly correlated with specific ultraviolet absorbance at 280 nm (SUVA(280)). The ability to model monochloramine loss and DCAA formation in the presence of NOM provides insight into disinfection by-product (DBP) formation pathways under chloramination conditions. The subsequent model and correlations to SUVA has the potential to aid the water treatment industry as a tool in developing strategies that minimize DBP formation while maintaining the microbial integrity of the water distribution system.  相似文献   

7.
Yang X  Shang C  Westerhoff P 《Water research》2007,41(6):1193-1200
Effects of contact time, monochloramine doses, monochloramine application modes, pH, temperature and bromide ion concentrations on formation of disinfection by-products (DBPs), including haloacetonitriles, haloketones, chloropicrin, cyanogen halides and trihalomethanes, during chloramination were investigated using model solutions containing 5 mg/L (as DOC) Suwannee River natural organic matter (NOM). Chloramine speciation and some DBPs were measured using membrane introduction mass Spectrometer (MIMS). Longer reaction times led to continued formation over time for dichloroacetonitrile (DCAN), 1,1-dichloro-2-propanone (1,1-DCP) and chloroform. Cyanogen chloride (CNCl) formation occurred over time, but after reaching a peak concentration CNCl concentrations decreased over longer time periods. Linear relationships were observed between the formation of DCAN, 1,1-DCP, CNCl or chloroform and the dosage of monochloramine. Chloramination modes (addition of preformed monochloramine or variable sequential additions of free chlorine and ammonium salts) exhibited the largest impact on chloroform formation but displayed little effect on the formation of DCAN, 1,1-DCP and CNCl. Over the range in pH from 4 to 9 profound differences in DBP formation were observed; pH values between 5 and 6 resulted in the highest DBP concentrations. An increase in temperature enhanced the formation of chloroform but did not affect DCAN, 1,1-DCP and CNCl formation. Chloropicrin concentrations were always low (around detection limits) under all conditions. Increasing the concentrations of bromide ions enhanced the formation of bromine-substituted DBPs.  相似文献   

8.
Liu W  Cheung LM  Yang X  Shang C 《Water research》2006,40(10):2033-2043
The formation of disinfection by-products (DBPs), including chloroform, dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and cyanogen chloride (CNCl) after sequential exposure of four organic waters to UV irradiation via either low- or medium-pressure lamps and free chlorine (or preformed monochloramine) under practical conditions was simulated. Statistically significant changes in the DBP formation from chlorination due to the additional UV irradiation are commonly observed under testing conditions, although some of these changes are not practically significant. The impacts from UV exposure were found to be most significant in chloroform formation (up to 40 microg/L) among the four tested DBPs. Organics from rivers were more sensitive to UV alteration than was the organic drawn from soil. This difference could not be explained by the specific UV absorbance (SUVA) values. In most cases, irradiation with the medium-pressure UV lamp gave similar or slightly larger changes in DBP yields, compared with the corresponding trials using the low-pressure lamp. Different application sequences could significantly change the relative quantities of DBPs but no general trend was identified. Case-specific evaluation of the formation of chloroform and CNCl is necessary.  相似文献   

9.
Many studies have demonstrated the different trends of disinfection by-products (DBPs) formation between chlorination and chloramination. However, the reactions between precursors and disinfectants are widely assumed to be “black box” and the reasons for abovementioned difference are not well illustrated. This study focused on source water with high levels of natural organic matter (NOM) and bromide, and compared the transformation of NOM specific characteristics and the ratios of specific DBPs as an equivalent of chlorine to total organic halogen (TOX) among three disinfection scenarios of chlorination, chloramination and chlorine–chloramine sequential treatment (Cl2–NH2Cl process). A three-reaction-phrases model was proposed thereafter to illustrate the major reactions involved in, i.e., stage-I: rapid consumption of fast reactive sites (DOC1), which transformed to slow reactive sites (DOC2) and measured DBPs, i.e., trihalomethanes, haloacetic acids, etc; stage-II: oxidation and/or halogenation of DOC2 into unknown TOX (UTOX) intermediates; stage-III: oxidation of UTOX intermediates into measured DBPs. The effect of ammonia was also quantified. Ammonia is observed to inhibit the formation of measured DBPs by 68–92%, 94–99%, and 92–95% of that in chlorination in Stage-I, II, and III, respectively, and the formation of UTOX is reduced by 2–80%, 60–94%, and 82–93% accordingly. These effects lead to the steady accumulation of DBPs intermediates such as UTOX, and to the elevated UTOX/TOX during chloramination and Cl2–NH2Cl process thereafter. The results illustrate the mechanism of ammonia participating in DBPs formation, and are valuable to fill in the gap between the transformation of precursors and the formation of different DBPs.  相似文献   

10.
Kanan A  Karanfil T 《Water research》2011,45(2):926-932
The contribution and role of different precursors in the formation of three class of disinfection by-products (DBPs) [trihalomethanes (THMs), haloacetic acids (HAAs), and halonitromethanes (HNMs)] in swimming pool waters were examined using filling waters obtained from five drinking water treatment plant (WTP) effluents and three body fluid analogs (BFAs). BFAs exerted higher chlorine demands as compared to natural organic matter (NOM) in filling waters. BFAs exhibited higher HAA formation potentials than THM formation potentials, while the opposite was observed for the filling water NOM. There was no appreciable difference in the HNM formation potentials of BFAs and filling water NOM. Different components in the BFAs tested exhibited different degree and type of DBP formation. Citric acid had significantly higher THM and HAA yields than other BFA components. The effect of temperature was greater on THM formation, whereas the effect of contact time had more impact on HAA formation. Experiments with filling waters collected from WTP effluents at three different times showed more variability in HAA than THM formation at the WTPs studied.  相似文献   

11.
The effect of pre-oxidation with chlorine dioxide (ClO2) or ferrate (Fe(VI)) on the formation of disinfection by-products (DBPs) during chlorination or chloramination was tested with natural waters from 12 sources (9 surface waters, 1 groundwater, and 2 wastewater effluents). DBPs investigated included trihalomethanes (THM), chloral hydrate (CH), haloketones (HK), haloacetonitriles (HAN) and trichloronitromethane (TCNM), chlorite and chlorate. Chlorite and chlorate were found in the ClO2-treated waters. Application of 1 mg/L ClO2 ahead of chlorination reduced the formation potential for THM by up to 45% and the formation of HK, HAN and TCNM in most of the samples. The CH formation results were mixed. The formation of CH and HK was enhanced with low doses of Fe(VI) (1 mg/L as Fe), but was greatly reduced at higher doses (20 mg/L Fe). Fe(VI) reduced the formation of THM, HAN and TCNM in most of the samples. Reduced potential for the formation of NDMA was observed in most of the samples after both ClO2 and Fe(VI) pre-oxidation.  相似文献   

12.
Organic matter in source water has presented many challenges in the field of water purification, especially for conventional treatment. A two-year-long pilot test comparing water treatment processes was conducted to enhance organic matter removal. The tested process combinations included the conventional process, conventional plus advanced treatment, pre-oxidation plus conventional process and pre-oxidation plus conventional plus advanced treatment. The efficiency of each kind of process was assayed with the comprehensive indices of COD(Mn), TOC, UV(254), AOC, BDOC, THMs, and HAAs and their formation potential. The results showed that the combination of the conventional process and O(3)-BAC provides integrated removal of organic matter and meets the required standards. It is the best performing treatment tested in this investigation for treating polluted source water in China. Moreover, much attention should be paid to organic removal before disinfection to control DBP formation and preserve biostability. This paper also reports the range of efficiency of each unit process to calculate the total efficiency of different process combinations in order to help choose the appropriate water treatment process.  相似文献   

13.
Seven water treatment works were selected to compare disinfection by-products (DBPs) formed when using chlorination and chloramination. DBPs measured included trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), trihalonitromethane, iodinated THMs and nitrosamines. Generally treatment works that used chloramination were able to meet the European THM regulatory limit of 100 μg L−1 whereas the chlorinated works found it significantly more difficult. There were no significant differences in the levels of nitrogenous DBPs between the treatment works using chlorination or chloramination with the exception of the nitrosamine N-nitrosodimethylamine (NDMA) which was present at one treatment works in one season.  相似文献   

14.
Jingyun Fang  Jun Ma  Xin Yang 《Water research》2010,44(6):1934-1940
Formation of carbonaceous disinfection by-products (C-DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), chloral hydrate (CH), and nitrogenous disinfection by-products (N-DBPs), including haloacetonitriles (HANs) and trichloronitromethane (TCNM) from chlorination of Microcystis aeruginosa, a blue-green algae, under different conditions was investigated. Factors evaluated include contact time, chlorine dosages, pH, temperature, ammonia concentrations and algae growth stages. Increased reaction time, chlorine dosage and temperature improved the formation of the relatively stable C-DBPs (e.g., THM, HAA, and CH) and TCNM. Formation of dichloroacetonitrile (DCAN) followed an increasing and then decreasing pattern with prolonged reaction time and increased chlorine dosages. pH affected DBP formation differently, with THM increasing, HKs decreasing, and other DBPs having maximum concentrations at certain pH values. The addition of ammonia significantly reduced the formation of most DBPs, but TCNM formation was not affected and 1,1-dichloropropanone (1,1-DCP) formation was higher with the addition of ammonia. Most DBPs increased as the growth period of algal cells increased. Chlorination of algal cells of higher organic nitrogen content generated higher concentrations of N-DBPs (e.g., HANs and TCNM) and CH, comparable DCAA concentration but much lower concentrations of other C-DBPs (e.g., THM, TCAA and HKs) than did natural organic matter (NOM).  相似文献   

15.
Formation of aldehydes upon ClO2 disinfection   总被引:7,自引:0,他引:7  
Carbonyl compounds are considered to be the most common ozonation by-products. Apart from well-known chlorites and chlorates, chlorine dioxide (ClO(2)) also generates organic by-products. The goal of this paper is an investigation into the influence of disinfection with ClO(2) on the aldehydes formation. Three types of waters were disinfected with different doses of ClO(2) at the various pH values. The results of size exclusion chromatography show that the reaction of ClO(2) with humic fraction of natural organic matter proceeds mainly on an aromatic part of the molecules. The results obtained indicate that the level of carbonyls concentration can significantly increase with the time of ClO(2) reaction with carbonyl precursors in treated water. There is no noticeable correlation between quantity of aldehydes and pH value of disinfected water. The range of "productivity" of aldehydes in water treated with chlorine dioxide is similar to the range estimated for the carbonyls formed upon ozonation.  相似文献   

16.
Modeling monochloramine loss in the presence of natural organic matter   总被引:2,自引:0,他引:2  
A comprehensive model describing monochloramine loss in the presence of natural organic matter (NOM) is presented. The model incorporates simultaneous monochloramine autodecomposition and reaction pathways resulting in NOM oxidation. These competing pathways were resolved numerically using an iterative process evaluating hypothesized reactions describing NOM oxidation by monochloramine under various experimental conditions. The reaction of monochloramine with NOM was described as biphasic using four NOM specific reaction parameters. NOM pathway 1 involves a direct reaction of monochloramine with NOM (kdoc1=1.05×104-3.45×104 M−1 h−1). NOM pathway 2 is slower in terms of monochloramine loss and attributable to free chorine (HOCl) derived from monochloramine hydrolysis (kdoc2=5.72×105-6.98×105 M−1 h−1), which accounted for the majority of monochloramine loss. Also, the free chlorine reactive site fraction in the NOM structure was found to correlate to specific ultraviolet absorbance at 280 nm (SUVA280). Modeling monochloramine loss allowed for insight into disinfectant reaction pathways involving NOM oxidation. This knowledge is of value in assessing monochloramine stability in distribution systems and reaction pathways leading to disinfection by-product (DBP) formation.  相似文献   

17.
Ultraviolet (UV) filters are vital constituents of sunscreens and other personal care products since they absorb, reflect and/or scatter UV radiation, therefore protecting us from the sun’s deleterious UV radiation and its effects. However, they suffer degradation, mainly through exposure towards sunlight and from reactions with disinfectant products such as chlorine. On the basis of their increasing production and use, UV filters and their degradation products have already been detected in the aquatic environment, especially in bathing waters. This paper presents a comprehensive review on the work done so far as to identify and determine the by-products of UV filter photodegradation in aqueous solutions and those subsequent to disinfection-induced degradation in chlorinated aqueous solutions, namely swimming pools.  相似文献   

18.
Huseyin Selcuk 《Water research》2010,44(13):3966-6140
In this study, disinfection and formation of disinfection by-products (DBPs) were studied in a photoelectrocatalytic (PEC) treatment system. Disinfection performance of titanium dioxide (TiO2) in the PEC system was determined through Escherichia coli (E. coli) inactivation. Humic acid (HA) was used as a model organic compound and its removal was monitored by total organic carbon (TOC) measurements using 410 nm (color) and 254 nm (UV254) wavelengths. Trihalomethanes (THMs) were measured for the evaluation of DBPs formation during PEC treatment of chloride and HA mixture. It was found that unlike photocatalytic treatment, THMs might form in the PEC system. To investigate the effects of anions on the PEC treatment, chloride (Cl), sulfate (SO42−), phosphoric acid (H2PO4)/hydrogen phosphate (HPO42−) and bicarbonate (HCO3) ions were added separately to the HA and bacterial suspensions. Presence of H2PO4/HPO42− and HCO3 ions resulted in inhibitory effects on both HA degradation and E. coli inactivation, which were also examined in the photoanode. It was observed that the presence of HA had a strong inhibitory effect on the disinfection of E. coli.  相似文献   

19.
Le-Clech P  Lee EK  Chen V 《Water research》2006,40(2):323-330
Since the mid-1990s, numerous studies on the treatment of drinking water by photocatalysis have been reported. Once optimised, the photocatalytic process can completely degrade numerous natural and artificial organic compounds. In this study, a hybrid photocatalysis/membrane process was used as a polishing treatment of surface water containing a small concentration of natural organic matters (i.e. total organic carbon (TOC) concentration of around 3mg/L) which may be difficult to remove using conventional filtration or coagulation. An optimum pH of 4.5 and a TiO(2) concentration of 0.1g/L were found to lead to the highest removal efficiencies. The relative effect of the individual processes featuring in the hybrid system (UV radiation, TiO(2) adsorption and membrane filtration) was also assessed for different pH values. The membrane separation process was accounted to remove around 18% of the initial TOC concentration, while TiO(2) adsorption alone was generally responsible for less than 5% of TOC removal during the 120 min of the experiments. However, when the natural water was only radiated by UV light, up to 70% of TOC was removed. A synergetic effect was observed when the three processes (TiO(2), UV and membrane) were used together. Comparison of removal efficiencies obtained during real and model (International Humic Substance Society) waters treatment by photocatalysis is also presented, revealing the importance of the nature of the feed in this type of treatment.  相似文献   

20.
Weng S  Li J  Blatchley ER 《Water research》2012,46(8):2674-2682
Ultraviolet (UV) irradiation is commonly applied as a secondary disinfection process in chlorinated pools. UV-based systems have been reported to yield improvements in swimming pool water and air chemistry, but to date these observations have been largely anecdotal. The objectives of this investigation were to evaluate the effects of UV irradiation on chlorination of important organic-N precursors in swimming pools.Creatinine, L-arginine, L-histidine, glycine, and urea, which comprise the majority of the organic-N in human sweat and urine, were selected as precursors for use in conducting batch experiments to examine the time-course behavior of several DBPs and residual chlorine, with and without UV254 irradiation. In addition, water samples from two natatoria were subjected to monochromatic UV irradiation at wavelengths of 222 nm and 254 nm to evaluate changes of liquid-phase chemistry. UV254 irradiation promoted formation and/or decay of several chlorinated N-DBPs and also increased the rate of free chlorine consumption. UV exposure resulted in loss of inorganic chloramines (e.g., NCl3) from solution. Dichloromethylamine (CH3NCl2) formation from creatinine was promoted by UV exposure, when free chlorine was present in solution; however, when free chlorine was depleted, CH3NCl2 photodecay was observed. Dichoroacetonitrile (CNCHCl2) formation (from L-histidine and L-arginine) was promoted by UV254 irradiation, as long as free chlorine was present in solution. Likewise, UV exposure was observed to amplify cyanogen chloride (CNCl) formation from chlorination of L-histidine, L-arginine, and glycine, up to the point of free chlorine depletion. The results from experiments involving UV irradiation of chlorinated swimming pool water were qualitatively consistent with the results of model experiments involving UV/chlorination of precursors in terms of the behavior of residual chlorine and DBPs measured in this study.The results indicate that UV254 irradiation promotes several reactions that are involved in the formation and/or destruction of chlorinated N-DBPs in pool settings. Enhancement of DBP formation was consistent with a mechanism whereby a rate-limiting step in DBP formation was promoted by UV exposure. Promotion of these reactions also resulted in increases of free chlorine consumption rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号