首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
针对智能电动车自动横向控制,建立了车辆横向动力学模型,设计了电动车转向控制器的模型预测(MPC)算法。将前轮转角作为控制输入变量,与期望轨迹的横向距离偏差、横摆角偏差及两者的变化率作为状态变量,控制器对车辆未来的状态变量进行预测,输出最优前轮转角,实现智能横向控制。在控制过程中,同时引入期望状态参数和系统松弛因子,优化车辆行驶状态。利用软件进行联合仿真,并进行实车试验。研究结果表明:控制器均能迅速响应,消除偏差,使车辆快速回到期望轨迹,保证车辆稳定平顺地行驶。  相似文献   

2.
在极限轮胎-路面条件下,智能汽车的横向操纵性能急剧恶化,增加了自动驾驶系统的控制难度。现有研究主要聚焦智能汽车轨迹跟踪的性能,但是难以解决低附着路面、紧急避障等极限工况下的智能汽车轨迹跟踪时的安全性和稳定性。利用模型预测控制方法实现了智能汽车的轨迹跟踪,同时保证智能汽车行驶稳定性和安全性,仿真试验同样表明该控制器具有较好的鲁棒性。结合二次型代价函数和安全约束构建了轨迹跟踪的开环最优预测控制问题,通过约束车辆的前后轮侧偏角,保持极限工况下智能汽车的行驶稳定性。研究方法与结果可为智能汽车设计提供参考。  相似文献   

3.
为了协调智能驾驶车辆的轨迹跟踪精确性和稳定性,提高控制算法对不同工况的自适应能力,提出基于Takagi-Sugeno模糊变权重模型预测控制(Takagi-Sugeno fuzzy model predictive control,T-S FMPC)的轨迹跟踪控制策略。以前轮转角为控制变量建立MPC控制,并以实时横向位移误差和横摆角误差为模糊输入,通过T-S模糊控制在线优化MPC目标函数权重,协调权重矩阵对轨迹跟踪精确性和稳定性的影响。基于Carsim建立分布式驱动电动汽车的整车动力学模型,基于Simulink建立控制策略,通过双移线工况仿真及实车试验,验证了所提控制策略的有效性。仿真结果表明,相比于传统MPC控制,所提出的T-S模糊变权重MPC控制可降低横向位移误差达62.24%,有效提高轨迹跟踪精度;并且可使前轮转角波动减小37.46%、横摆角误差减小84.19%,显著增强轨迹跟踪稳定性;试验结果表明,在20 km/h、沥青路面双移线工况下,横向位移误差在0.12 m以内,横摆角误差在1°以内,且前轮转角控制曲线平滑,说明所提算法具有良好的控制效果和实用性。  相似文献   

4.
针对采用传统模型预测控制器的车辆在弯道内跟踪精度难以保证的问题,本文提出了一种基于状态反馈的路径跟踪横向控制策略。基于车辆动力学模型,建立考虑轮胎滑移包络线约束条件的路径跟踪模型预测控制器,并根据车速选择合适的控制器时域参数;以车辆质心位置为控制点建立车辆跟踪误差模型,结合车辆当前位置横摆角偏差建立状态反馈调节器,通过LQR最优控制方法对无人车姿态进行校正。利用MATLAB/Simulink和Carsim软件对改进的状态反馈控制策略进行了仿真验证,典型双移线道路仿真试验表明:中低车速下车辆路径跟踪横向偏差降低了16%以上,横摆角偏差降低了33%以上,所设计控制器能够有效提高车辆路径跟踪精度,可保证车辆对变曲率弯道具有适应性和行驶稳定性。  相似文献   

5.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

6.
寻迹控制作为自动驾驶车辆横向控制中最基本环节,其稳定性和跟踪精度通常与车速、转弯曲率等相关,直接影响车辆在复杂行驶工况中的安全性。为提高自动驾驶车辆在复杂工况下的稳定性和跟踪精度,结合路径规划、寻迹控制并考虑车辆稳定性提出基于自适应预瞄路径的自动驾驶车辆寻迹和避障控制方法。首先,基于车辆二自由度模型设计出预瞄距离自适应算法,其根据车辆动力学状态和路面附着调节预瞄距离;其次,通过三次多项式拟合方法给出给定预瞄距离下的预瞄路径;最后,基于避障能力、跟踪精度、车辆稳定性指标设计出粒子群优化算法(PSO),实现了算法参数的寻优。通过硬件在环试验和实车试验验证了算法在寻迹、换道和避障工况下效果,结果表明算法以小运算量实现了跟踪时的预瞄路径自适应调节,兼顾跟踪精度和车辆稳定性。  相似文献   

7.
为解决智能车辆进行变轨迹跟踪问题,基于传统的MPC(模型预测控制)控制器设计一种轨迹跟踪控制器,使所设计的控制器应用于智能车辆时能够先进行五次多项式的单行换道然后继续追踪一定半径的圆形轨迹行驶。采用二自由度车辆运动学模型,分析研究传统MPC控制器的设计原理,将二自由度车辆运动学模型进行线性、离散化处理得到线性误差方程;构建新的状态空间方程引入控制量的变化量,在此基础上进行迭代得到预测方程,利用这一时刻的状态量和控制量的变化量预测下一时刻的状态量。将求解这一时刻控制量的问题转化为二次规划问题,建立目标函数(代价函数),结合硬约束和软约束条件解得控制量,该控制量输入车辆模型得到新的状态量,进而得到新的误差方程,利用约束环节进行反馈校正,如此循环,逐渐追踪上参考轨迹。为防止求解最优解出现无解时能够继续进行计算,加入松弛因子得到新的能够适应变轨迹的MPC控制器。设计五次多项式的单行道换道轨迹与圆形轨迹的连续变轨迹,搭建Carsim-Simulink联合仿真平台进行实验,验证结果显示:该控制器应用于智能车辆时能够先进行单行道换道行驶然后继续进行圆形轨迹的变轨迹追踪,所设计的控制器具有新型可行性。  相似文献   

8.
针对摊铺后处理履带车人工步进行驶易与摊铺路面发生碰撞,且难以摆正终点的车辆位置的问题,设计了一种基于MPC的履带车步进行驶控制器。该控制器基于四次多项式轨迹规划,规划步进轨迹,依据碰撞约束及终点平稳性设计目标函数;基于四次多项式规划结果,采用非线性MPC算法及线性MPC耦合PID算法进行轨迹跟踪仿真对比。仿真结果表明,控制器满足碰撞约束及轨迹平稳性要求,线性MPC算法实时性及轨迹跟踪效果更好,对提高路面摊铺后处理质量有重要意义。  相似文献   

9.
采用传统模型预测控制(MPC)的无人车难以同时保证路径跟踪精度和实时性,针对此问题,本文设计了一种采用状态扩展MPC与转角补偿的路径跟踪控制器。建立了车辆三自由度动力学模型,设计了基于状态扩展的双反馈MPC控制器,并根据车速调整控制器参数;建立了车辆-道路跟踪模型,根据车辆横向和航向偏差设计了转角补偿模糊控制器;利用MATLAB/Simulink和Carsim软件对所设计的路径跟踪控制器进行联合仿真分析。结果表明:相比采用传统MPC控制器的车辆,在中、低车速下,状态扩展MPC控制器的控制增量求解时间平均值降低14%以上,路径跟踪控制器跟踪道路的横向和航向偏差最大值分别降低23%和17%以上,具有较好的路径跟踪性能。  相似文献   

10.
横摆稳定性和轨迹跟踪性能对无人车至关重要。为此,提出一种基于模型预测控制的轨迹跟踪控制器,将考虑瞬时极限性能的稳定性判据添加到控制器约束中,并且利用性能驱动的方式对控制器的参数进行优化。首先根据车辆3自由度动力学模型建立横摆角速度-质心侧偏角相平面,分析前轮转角对相平面平衡点的影响,通过建立相平面的等倾几何曲线,分析车辆的稳定性特征,设计出基于包络线的横摆稳定性判据。然后将模型预测控制器的代价函数参数化,根据性能目标设计特定场景的全局代价作为评价函数,利用贝叶斯优化进行预测时域和代价函数权重两类参数的优化,实现目标任务全局性能最优。仿真和实车试验表明,所提算法在保证车辆稳定的前提下,发挥了车辆的动力学极限,采用的贝叶斯优化方法对轨迹跟踪模型预测控制器的参数进行了优化,实现了轨迹跟踪性能的提高。  相似文献   

11.
This paper presents an extended model predictive control (MPC) scheme for implementing optimal path following of autonomous vehicles, which has multiple constraints and an integrated model of vehicle and road dynamics. Road curvature and inclination factors are used in the construction of the vehicle dynamic model to describe its lateral and roll dynamics accurately. Sideslip, rollover, and vehicle envelopes are used as multiple constraints in the MPC controller formulation. Then, an extended MPC method solved by differential evolution optimization algorithm is proposed to realize optimal smooth path following based on driving path features. Finally, simulation and real experiments are carried out to evaluate the feasibility and the effectiveness of the extended MPC scheme. Results indicate that the proposed method can obtain the smooth transition to follow the optimal drivable path and satisfy the lateral dynamic stability and environmental constraints, which can improve the path following quality for better ride comfort and road availability of autonomous vehicles.  相似文献   

12.
随着自动驾驶技术的快速发展,精确的轨迹跟踪已经成为汽车工业和学术领域公认的实现自主车辆运动控制的核心技术之一。为提高自主车辆轨迹跟踪的实时性与准确性,提出一种应用于自主车辆的线性时变模型预测跟踪控制器(Linear time-varying model predictive controller,LTV-MPC)设计方法。根据运动学原理建立某自主无人小车的二自由度运动学模型,其次,基于该模型构建车辆轨迹跟踪系统的误差模型并利用线性参数化理论对其进行离散化,在模型预测控制框架内将该轨迹跟踪控制器的设计转化为一个线性二次规划最优问题。在一个实际搭建的自主车辆试验平台上对所提出控制器的有效性进行不同预设参考路径轨迹下的实车验证,结果表明,该自主车辆能够对所预设的实际参考道路轨迹进行快速、准确的轨迹跟踪控制,且具有较好的行驶稳定性能。  相似文献   

13.
This paper describes an autonomous driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consisted of four parts: speed controller for following the desired speed, trajectory tracking controller to track the desired trajectory, longitudinal tire force distribution algorithm which determines the optimal desired longitudinal tire force and wheel torque controller which determines the wheel torque command at each wheel to keep the slip ratio below the limit value as well as to track the desired tire force. The longitudinal and vertical tire force estimators were designed for optimal tire force distribution and wheel slip control. The dynamic model of the RVAS is validated using vehicle test data. Simulation and vehicle tests were conducted in order to evaluate the proposed driving control algorithm. Based on the simulation and test results, the proposed driving controller was shown to produces satisfactory trajectory tracking performance.  相似文献   

14.
四轮轮毂电机驱动电动汽车各轮驱动力矩独立可控,可通过控制前轴左右两轮的力矩差实现前轮转向。以四轮轮毂电机驱动智能电动汽车为研究对象,针对线控转向系统执行机构失效时的轨迹跟踪和横摆稳定性协同控制问题,提出一种基于差动转向与直接横摆力矩协同的容错控制方法。该方法采用分层控制架构,上层控制器首先基于时变线性模型预测控制方法求解期望前轮转角和附加横摆力矩,然后考虑转向执行机构建模不确定性以及路面干扰,设计基于滑模变结构控制的前轮转角跟踪控制策略。下层控制器以轮胎负荷率最小化为目标,利用有效集法实现四轮转矩优化分配。最后,分别在高速换道和双移线工况下仿真验证了该控制方法的有效性和实时性。  相似文献   

15.
针对运动型多功能汽车(Sport utility vehicle,SUV)换道过程中侧翻安全问题,提出融合侧翻稳定性的SUV换道轨迹规划方法。建立三自由度车辆动力学模型,推导SUV侧翻稳定性及侧滑稳定性评价指标。采集自车状态及环境信息,将换道轨迹规划分成预规划和重规划两个阶段;预规划阶段采用五次多项式模型生成横向轨迹簇,重规划阶段考虑周围车辆动态变化,生成包含自车纵向速度信息的轨迹簇。融合侧翻稳定性指标、侧滑稳定性指标以及双圆拟合的车辆外形最小距离,构建代价函数;进行轨迹簇碰撞筛选、稳定性筛选及轨迹选择。运用内点惩罚函数进行轨迹优化,求解最优轨迹。选取两种典型工况进行换道轨迹规划仿真,结果表明SUV沿着该方法规划的轨迹行驶可完成换道躲避障碍物,且横向位移小、换道效率高,可有效避免侧翻危险。  相似文献   

16.
A comparative study of model predictive control(MPC) schemes and robust H_∞ state feedback control(RSC) method for trajectory tracking is proposed in this paper. The main objective of this paper is to compare MPC and RSC controllers' performance in tracking predefined trajectory under different scenarios. MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire, which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode. RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison. Then, three test cases are built in CarSim-Simulink joint platform. Specifically, the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions. Besides, the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability. Furthermore, an extreme curve test is built where the road adhesion changes suddenly, in order to test the performance of both controllers under extreme conditions. Finally, the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.  相似文献   

17.
This paper proposes a novel nonlinear model predictive controller (MPC) in terms of linear matrix inequalities (LMIs). The proposed MPC is based on Takagi–Sugeno (TS) fuzzy model, a non-parallel distributed compensation (non-PDC) fuzzy controller and a non-quadratic Lyapunov function (NQLF). Utilizing the non-PDC controller together with the Lyapunov theorem guarantees the stabilization issue of this MPC. In this approach, at each sampling time a quadratic cost function with an infinite prediction and control horizon is minimized such that constraints on the control input Euclidean norm are satisfied. To show the merits of the proposed approach, a nonlinear electric vehicle (EV) system with parameter uncertainty is considered as a case study. Indeed, the main goal of this study is to force the speed of EV to track a desired value. The experimental data, a new European driving cycle (NEDC), is used in order to examine the performance of the proposed controller. First, the equivalent TS model of the original nonlinear system is derived. After that, in order to evaluate the proficiency of the proposed controller, the achieved results of the proposed approach are compared with those of the conventional MPC controller and the optimal Fuzzy PI controller (OFPI), which are the latest research on the problem in hand.  相似文献   

18.
车道保持系统中车辆横向运动控制应模拟驾驶员的横向操纵行为,驾驶员根据前方道路曲率及车辆速度适时调节预瞄距离,以获得理想的路径跟踪性能。首先,以车辆二自由度动力学模型及车辆道路几何位置关系为基础,建立车-路横向动力学模型。其次,基于单点预瞄最优曲率模型设计侧向加速度PD跟踪控制器,联立车-路横向动力学模型构建横向控制闭环系统,分析预瞄距离、车速、道路曲率的变化对系统响应的影响。最后,设计模糊控制器对预瞄距离进行模糊选择以提高车辆横向控制精度和减小侧向加速度,采用遗传算法对模糊规则进行优化以使横向控制系统性能达到最优。试验表明,相对固定预瞄控制方法,自适应预瞄减小了车辆侧向加速度,且道路跟踪的方向偏差和距离偏差均得到减小。  相似文献   

19.
基于遗传优化的无人车横向模糊控制   总被引:8,自引:0,他引:8  
以视觉导航式无人车DLUIV-1为控制对象,对其进行横向运动控制研究。建立视觉导航式无人车横向运动控制系统模型,对无人车的横向运动行为进行描述。在此基础上,分析预瞄距离对横向控制系统动态性能的影响,并建立考虑速度因素的预瞄距离计算公式。针对无人车具有非完整运动约束、高度非线性动态特性以及参数的不确定性等特点,提出基于遗传算法的无人车横向模糊控制策略,通过遗传算法对横向模糊控制器的隶属度函数参数和控制规则的自动优化,从而有效地确定出横向模糊控制器的隶属度函数和控制规则。最后通过仿真和实车试验对该横向模糊控制器进行验证和评价,仿真和试验结果表明,该横向控制器可保证无人车稳定准确地跟踪参考路径,且具有较强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号