首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种新型独立敏感式微机电系统(MEMS)热膨胀流陀螺并对其敏感机理进行了研究。通过COMSOL创建了该结构的三维模型,并使用有限元方法对其敏感结构的温度场进行了计算。结果表明,在加热器功率为50 mW,角速度为-10~10 rad/s时,该陀螺的温度灵敏度为0.224 K·(rad·s-1)-1,非线性度为2.37%,具有陀螺效应,且灵敏度为1.8 mV·(rad·s-1)-1,非线性度为2.06%。该陀螺具有灵敏度高及工艺简单等特点,为后续结构优化提供了理论依据。  相似文献   

2.
提出一种新型推挽式热膨胀流陀螺结构,并解释了它的敏感机理.通过建立陀螺敏感元件的二维模型,利用COMSOL有限元分析软件对敏感元件内的温度场和气流速度场进行了计算,同时研究了角速度对温度场和气流速度场变化的影响,最后在Proteus电路仿真软件中通过建立陀螺检测电路模型定量地计算了热膨胀流陀螺的输入输出特性关系.计算结...  相似文献   

3.
该文给出了一种热振子式双轴微机电系统(MEMS)角速度陀螺的敏感机理。在给出双轴敏感原理、热振子的振动模态和陀螺效应的基础上,对敏感结构内的温度场进行了计算。结果表明,开机1.8 s后在敏感结构内形成了一个稳定的温度场;当有角速度加载时,热振子随着输入角速度而移动,造成温度场偏移,两个正交Y(X)方向上对称设置的两热线温差ΔTY(ΔTX)随着输入角速度ax(ay)的加大呈现线性增长,x、y轴平均温度灵敏度为121 mK/(°)/s;根据输入-输出ωx-VYout和ωy-VXout特性曲线得到数学模型,从而揭示了敏感机理,x、y轴平均灵敏度为0.091 mV/(°)/s,平均非线性度为1.86%,平均交叉耦合为2.3%。该文为优化结构奠定了实用理论基础。  相似文献   

4.
该文揭示了一种动热源摆式单轴微机电系统(MEMS)热加速度计的敏感机理。在给出敏感结构原理的基础上,通过建立二维物理研究模型、划分网格、加载加速度等方法对敏感结构内的温度场进行了计算。结果表明,开机1.8 s后在敏感结构内形成了一个稳定的以动热源为中心的温度场;输入加速度a时,动热源沿着加速度方向偏移,温度场随之偏移,敏感轴方向上对称设置的两个热线温差ΔTX随着输入加速度a的加大而呈线性增长,温度灵敏度为7.1×10-2 mK/g。根据输入-输出(a-VXOUT)特性曲线给出数学模型,得到该加速度计灵敏度为0.5 V/g,非线性度为2.8%,从而揭示了敏感机理。  相似文献   

5.
石英微机械陀螺敏感芯片通常采用双端音叉结构,驱动音叉和检测音叉的振动耦合误差是其主要误差源。对双端音叉结构陀螺敏感芯片进行了结构解耦设计仿真,分析了芯片安装区对检测音叉振动特性的影响。通过解耦设计,减小了零偏误差信号,提高了陀螺敏感芯片的稳定性。  相似文献   

6.
王义  朴林华 《微纳电子技术》2007,44(7):10-11,16
根据计算敏感元件内的流场分布解释微型气流陀螺的敏感机理。利用ANSYS-FLOTRANCFD软件,根据陀螺实际尺寸进行建模求解,计算出在不同输入角速度时二维腔体中气体的流场及分布。计算结果表明,陀螺静止时两热电阻丝处气流速度相等,电流相等,输出电压为零;有角速度输入时,电阻丝气流速度不同,输出一个与角速度成比例的电压。  相似文献   

7.
石英微机械陀螺敏感器件通常采用一体式音叉结构,具有较高的可靠性,但由于在敏感芯片中设计了挠性结构,挠性结构的参数及加工质量是影响器件可靠性的关键因素。分析了敏感芯片挠性结构在外力作用下的应力分布及结构缺陷对其影响,分析了其失效模式。试验结果验证了分析的准确性,分析结果可作为改进敏感器件可靠性的依据。  相似文献   

8.
根据计算敏感元件内的流场分布解释微型气流陀螺的敏感机理。利用ANSYS-FLOTRANCFD软件,根据陀螺实际尺寸进行建模求解,计算出在不同输入角速度时二维腔体中气体的流场及分布。计算结果表明,陀螺静止时两热电阻丝处气流速度相等,电流相等,输出电压为零;有角速度输入时,电阻丝气流速度不同,输出一个与角速度成比例的电压。  相似文献   

9.
根据计算敏感元件内的流场分布解释微型气流陀螺的敏感机理.利用ANSYS-FLOTRAN CFD软件,根据陀螺实际尺寸进行建模求解,计算出在不同输入角速度时二维腔体中气体的流场及分布.计算结果表明,陀螺静止时两热电阻丝处气流速度相等,电流相等,输出电压为零;有角速度输入时,电阻丝气流速度不同,输出一个与角速度成比例的电压.  相似文献   

10.
采用有限元法,解释了微机械气流式全方位水平姿态传感器的敏感机理.通过建立敏感元件的三维模型,计算了敏感元件内气流速度在不同倾斜状态下的分布.结果表明,热源周围两两相对的热敏电阻处的气流速度之差随着倾斜角度的变化而改变;随着倾斜角度的增加,两热敏电阻处的气流速度之差加大,流过两热敏电阻的电流之差加大,电桥失去平衡,输出一个与倾斜角度相对应的电压.有限元计算方法为该传感器的优化设计开辟了有效的研究途径.  相似文献   

11.
石英微机械陀螺敏感器件在多轴陀螺应用中,各敏感器件之间存在振动干扰,导致陀螺噪声过大,输出信号中存在低频信号,无法满足使用要求。应用减振技术设计了一款集成式的减振器,该减振器具有体积小、质量轻等特点。利用有限元法模拟计算减振器减振效率及固有频率,该减振器在敏感器件激励频率范围内减振效率大于96%;减振器转动振动模态固有频率大于陀螺带宽(150Hz)的两倍以上;减振器低阶线性振动模态固有频率大于敏感器件检测频率与激励频率之差(340Hz)的两倍以上。  相似文献   

12.
揭示了一种基于开放式气流通道的微机械z轴射流陀螺的敏感机理。采用基于流固耦合的三维瞬态有限元分析法,计算了敏感元件内部气流场,并给出了数学模型。计算和测试结果表明:敏感元件内有一开放式的气流通道,分别设置两个入口和一个出口,气流在压电泵的驱动下,由两个入口进入并汇聚,由喷口喷出的气流在射流敏感室形成射流敏感体并从出口流出。在静止条件下,射流敏感体相对热线r1和r2对称分布,作为电桥两个臂的热线r1和r2之间的速度梯度βx=0,电桥平衡,输出电压为0;有角速度输入时,射流敏感体在哥氏力的作用下沿着z轴发生偏转,射流敏感体相对热线r1和r2不再对称分布,βx随着角速度的增加而加大,在其他材料和结果参数不变的情况下,由于射流敏感体与热线r1和r2不对称的热量交换,热线r1和r2的电阻发生不对称的改变,导致电桥失去平衡,电桥输出与输入角速度成正比的不平衡电压。在±120(°)/s的输入范围内,陀螺灵敏度为2.0μV/[(°)·s-1],非线性度优于0.5%,功耗为5.2mW,热线电阻为3Ω,热线电阻温度系数为2 600℃-1。这种微机械开放式z轴陀螺敏感元件内气流由开放的入口和出口之间形成定向流动,无需气流在敏感元件内循环,敏感元件结构简单。  相似文献   

13.
石英微机械陀螺是振动惯性器件,而陀螺敏感芯片结构的抗振动能力会直接影响陀螺的性能。由于工作环境的振动会对陀螺的性能产生一定的影响,因此需提高陀螺敏感芯片结构的抗振动能力。该文利用有限元仿真软件对敏感芯片结构进行随机振动仿真分析,通过对敏感芯片结构的优化,提高了陀螺的抗振动能力。  相似文献   

14.
微机械静电陀螺研究   总被引:2,自引:0,他引:2  
何国鸿 《电子学报》1997,25(5):86-88
微机械陀螺是一种新型的惯导元件,目前主要的研究形式是振动陀螺,本文介绍了一种基于静电悬浮的微机械陀累析模型,它的敏感元件是一块感应悬浮圆板,能够探测沿圆板经向轴输入的角速信号,文章阐述了它的基本原理,并给出了我们最初的实验结果。  相似文献   

15.
揭示了微机械气流式加速度计的敏感机理。采用有限元方法,分析了在不同加速度输入时敏感元件内的流场分布。结果表明,无加速度输入时,两热敏电阻处的气流速度相等,两热敏电阻上的电流相等,电桥输出为0;有加速度输入时,两热敏电阻处的气流速度之差随加速度变化而变化,引起两热敏电阻上电流之差也随之变化,电桥输出一个对应于加速度的电压。所述的方法为微机械气流式加速度计的结构优化设计提供了简单有效的途径。  相似文献   

16.
17.
无驱动硅微机械陀螺   总被引:3,自引:2,他引:1  
报道了无驱动结构硅微机械陀螺,推导了输出电压方程。从方程表达式可看出,该陀螺输出信号包含旋转载体的偏航和俯仰角速度及自旋角速度的信息。通过实验说明如何在输出信号中提取相关信息,即输出信号的频率表示载体自旋角速度的平均值,输出信号的包络表示载体偏航和俯仰角速度大小的瞬时值,输出信号的极性由输出波形的相位超前和滞后确定。最后给出该陀螺目前所达到的主要性能指标。  相似文献   

18.
该文提出了一种单轴微机电系统(MEMS)热膨胀流陀螺的基本结构,并揭示了其敏感机理。通过有限元法,利用COMSOL Multiphysics建立了陀螺的三维模型,在有无角速度时对陀螺敏感元件的温度场和等温线变化情况进行计算。结果表明,单轴MEMS热膨胀流陀螺具有陀螺效应,输入角速度为[-1 080 (°)/s, 1 080 (°)/s],陀螺的结构灵敏度为0.053 9 K/[(°)·s-1],非线性度为14.13%。  相似文献   

19.
分析了旋转式硅微机械陀螺的工作原理,建立了该陀螺的数学模型,设计了其敏感结构,计算了陀螺振动元件三个轴向的转动惯量、弹性支撑梁扭转刚度、振动元件角振动阻尼系数等动力学参数,计算分析了陀螺的电容敏感特性.对制作的陀螺进行性能测试的结果表明,该陀螺利用旋转载体自身的旋转角速度作为驱动,从而说明敏感载体的俯仰(或横滚)角速度原理正确,并且理论和试验都说明,当载体自旋角速度不同时,陀螺输出信号的比例系数也不同.  相似文献   

20.
分析了旋转式硅微机械陀螺的工作原理,建立了该陀螺的数学模型,设计了其敏感结构,计算了陀螺振动元件三个轴向的转动惯量、弹性支撑梁扭转刚度、振动元件角振动阻尼系数等动力学参数,计算分析了陀螺的电容敏感特性。对制作的陀螺进行性能测试的结果表明,该陀螺利用旋转载体自身的旋转角速度作为驱动,从而说明敏感载体的俯仰(或横滚)角速度原理正确,并且理论和试验都说明,当载体自旋角速度不同时,陀螺输出信号的比例系数也不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号