首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 44 毫秒
1.
采用磁力搅拌-脉冲电沉积法在45钢表面制备Ni-P-SiC镀层。采用正交试验法优化Ni-P-SiC镀层的制备工艺,利用扫描电镜(SEM)和磨损试验机进行Ni-P-SiC镀层表面形貌及耐磨性能分析。结果表明,磁力搅拌-脉冲电沉积复合制备Ni-P-SiC镀层的最佳工艺为:磁力搅拌速率200r/min,脉冲占空比2∶1,脉冲电流密度4A/dm2,SiC粒子的质量浓度6g/L。1号试样的磨损较严重,磨损量为5.1mg;6号试样的磨损则较轻,磨损量为2.7mg。  相似文献   

2.
为改善金属零件的耐磨性能,用磁力搅拌-化学沉积法在45钢表面制备Ni-P-SiC镀层,利用正交实验对其制备工艺参数进行优化。结果表明,SiC粒子的添加量、搅拌速度和镀液pH值对磁力搅拌-化学沉积Ni-P-SiC镀层的磨损量有较大影响。正交实验分析可知,磁力搅拌-化学沉积Ni-P-SiC镀层的最佳工艺参数为:SiC的质量浓度10 g/L,搅拌速度300 r/min,pH值5.5。  相似文献   

3.
用磁力搅拌-化学沉积的方法,在45钢表面沉积Ni-P-SiC镀层。研究了SiC微粒添加量、搅拌速率以及镀液温度等对镀层硬度和表面形貌的影响,借助扫描电子显微镜(SEM)对镀层进行观察。结果表明:当SiC的质量浓度为10 g/L时,镀层显微硬度最大(615.2HV);当磁力搅拌速率为300 r/min时,镀层的显微硬度最大(632.8HV)。磁力搅拌-化学沉积Ni-P-SiC镀层的最佳工艺参数为:SiC添加的质量浓度10 g/L,搅拌速率300 r/min,温度85℃。  相似文献   

4.
SiC粒度对磁力搅拌-化学沉积Ni-P-SiC镀层的影响   总被引:1,自引:0,他引:1  
用磁力搅拌-化学沉积方法在45钢表面制备Ni-P-SiC镀层,研究镀液中SiC颗粒粒度对镀层表面形貌、显微硬度及耐磨性能的影响。结果表明:随着SiC颗粒的粒度逐渐减小,镀层的平整度和致密性增加,SiC颗粒团聚现象越来越不明显;当SiC粒度为0.2 μm,Ni-P-SiC镀层表面均匀分散着微小的SiC颗粒,镀层平整、致密,平均显微硬度为853.4HV;当SiC粒度为1,2 μm,最大硬度差分别为25.8HV和40.5HV。随着磨损时间的增加,含有SiC粒度0.2 μm的Ni-P-SiC镀层的磨损量缓慢增加,而SiC粒度为2,1 μm的Ni-P-SiC镀层的磨损量急剧增加。  相似文献   

5.
采用超声波和机械搅拌相结合方法,在45钢表面化学镀Ni-P-SiC层。利用扫描电镜对Ni-P-SiC镀层进行表面形貌分析,结果表明:采用机械搅拌-化学镀,当搅拌速率为300 r/min,Ni-P-SiC镀层表面变得较为光滑、平整,胞状组织也细小,表面致密;采用超声波搅拌-化学镀,当超声波功率为200 W,SiC颗粒在镀层中的分散性较好,镀层较致密;采用超声波-机械搅拌-化学镀,施加超声波功率为200 W和机械搅拌速率为300 r/min的复合搅拌作用,可获得表面光滑、平整,且孔隙率和胞状组织细小的Ni-P-SiC镀层。  相似文献   

6.
为改善抽油泵泵筒的综合性能,采用喷射搅拌-化学沉积工艺,在抽油泵泵筒内表面镀覆Ni-P-SiC镀层。Ni-PSiC镀层的表面微观形貌、硬度、组成成分及其摩擦磨损性能分别用原子力显微镜(AFM)、显微硬度计、XRD衍射仪以及磨损试验机等进行测试研究。结果表明:喷射搅拌-化学沉积制备的Ni-P-SiC镀层主要由Ni和SiC两相构成;当镀液添加SiC的质量浓度为8 g/L时,喷射搅拌-化学沉积Ni-P-SiC镀层表面较为细密、光整,其显微硬度的最大值为902.4HV。SEM分析表明,该Ni-P-SiC镀层的磨痕较浅,且表面较光滑。  相似文献   

7.
用超声波-机械搅拌-电沉积法制备Cu-SiC复合镀层。利用正交试验对Cu-SiC复合镀层的制备工艺进行优化,利用扫描电镜(SEM)、能谱仪(EDS)以及磨损试验机对Cu-SiC镀层的表面形貌、组分及耐磨性能进行分析。结果表明:采用超声波-机械搅拌-电沉积法,可获得表面致密、晶粒细小的Cu-SiC复合镀层,且复合镀液稳定,没有出现自分解现象;最佳工艺为超声波功率200 W,机械搅拌速率300 r/min,SiC粒子浓度8 g/L,电流密度5 A/dm2。该工艺制备的Cu-SiC复合镀层耐磨性能较好。  相似文献   

8.
采用喷射电沉积法,以不同喷射参数在Q235钢表面制备Ni-TiN纳米镀层,并综合正交试验、Fluent软件对镀液喷射过程仿真模拟结果,得到制备Ni-TiN纳米镀层的最佳喷射参数组合.通过扫描电镜(SEM)、X射线衍射仪(XRD)、电化学工作站、摩擦磨损试验机等设备,观察分析镀层显微组织结构、测试镀层耐腐蚀与耐磨性,通过与仿真结果进行比对,验证仿真结果的准确性.结果表明:5#试样制备参数最佳,其参数是喷嘴出口直径为6 mm,喷嘴收缩角为45°,喷射压力为8 MPa;试样表面平整光滑、镀层结构致密,几乎无空隙,耐磨及耐腐蚀性能皆较强.  相似文献   

9.
通过功率超声-脉冲电沉积方法在45钢基体表面制备Ni-TiN镀层。利用原子力显微镜、透射电镜、扫描电镜及摩擦磨损试验机对Ni-TiN镀层的表面形貌、显微组织及耐磨损性能进行研究。结果表明:施加功率超声可使Ni-TiN镀层表面致密、光滑、晶粒细小且无明显团聚现象,TiN颗粒分散更加均匀,Ni晶粒与TiN颗粒的平均粒径为45.1、27.9nm;制得的Ni-TiN镀层耐磨性能较为优异,在干摩擦和油润滑条件下的磨损体积为1.2×10-3、0.2×10-3V/mm3。  相似文献   

10.
通过超声-电沉积方法,在45钢基体表面制备Ni-TiN纳米镀层。利用扫描电镜、X射线衍射仪、显微硬度及电化学工作站对Ni-TiN镀层的表面形貌、显微硬度以及耐腐蚀性能进行研究。结果表明:当超声波功率为200 W时,镀层表面颗粒组织进一步细化,且起伏较小,表面较为平整,其显微硬度达到最大值,为735.7HV;采用超声波功率为100 W和200 W制备的Ni-TiN纳米镀层,其腐蚀电流分别为1.549×10-4A/cm~2和6.368×10-5A/cm~2,TiN粒子平均粒径分别为83.1 nm和69.8 nm。  相似文献   

11.
采用机械搅拌-电沉积方法,在45钢基体表面制备Cu-SiC纳米复合镀层。利用扫描电镜和摩擦磨损试验机研究机械搅拌速率、电流密度、SiC粒子质量浓度以及pH值等因素对Cu-SiC纳米复合镀层耐磨性能的影响及规律。结果表明,Cu-SiC纳米复合镀层的最佳制备工艺参数为:搅拌速率300 r/min,阴极电流密度4 A/dm2,镀液中SiC粒子的浓度4 g/L,pH值3.5~4.5。  相似文献   

12.
采用脉冲电沉积的方法,在20钢表面制备Ni-SiC复合镀层。利用显微硬度计和摩擦磨损试验机研究工艺参数对Ni-SiC复合镀层性能的影响规律,利用扫描电镜观察Ni-SiC复合镀层的表面形貌。结果表明,SiC粒子浓度、阴极电流密度、占空比等工艺参数对Ni-SiC复合镀层的性能和表面形貌有很大影响。当SiC质量浓度为8 g/L、电流密度为4 A/dm2、占空比为10%时,Ni-SiC复合镀层表面的颗粒相对较小,致密性好,镀层中大量均布着小颗粒的SiC粒子。  相似文献   

13.
脉冲电镀Ni-SiC镀层及其表征   总被引:1,自引:0,他引:1  
采用脉冲电镀的方法制得Ni-SiC镀层,研究电参数和热处理温度对Ni-SiC镀层表面形貌、显微硬度及结合力的影响。结果表明:在适宜的脉冲电流作用下,镀层组织得到进一步细化,镀层中的SiC颗粒含量增加,从而获得细密、平整的镀层;热处理温度对Ni-SiC镀层的显微硬度和结合力有较大影响,当热处理温度为300 ℃,脉冲电镀制备的3种镀层显微硬度达到最大值,分别为880HV,903HV,896HV;镀层的结合力达到最大值,分别为76,78,77 N。  相似文献   

14.
冷喷涂技术制备纳米涂层   总被引:14,自引:0,他引:14  
在KY—HVO (A)F多功能超音速火焰喷涂的基础上实现了冷喷涂技术。采用该技术在钢基体上制备了二氧化钛纳米涂层。运用XRD、SEM对喷涂用粉末和涂层的显微结构和物相组成进行了观察和确定。结果表明采用冷喷涂技术形成了TiO2 纳米涂层。与原始的纳米粉末相比 ,纳米涂层没有发生相变 ,晶粒也没有长大  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号