首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了7xxx系铝合金的应力腐蚀开裂机理(Stress corrosion cracking)与影响因素。应力腐蚀开裂机理主要有阳极溶解理论、氢致理论与"相变-Mg-H"理论。适当的固溶工艺与时效工艺可以提高铝合金的抗应力腐蚀性能;铝合金的应力腐蚀开裂敏感性随水蒸气中氧含量的增加而提高,含有Cl-、Br-和I-的水溶液会加快铝合金的应力腐蚀开裂的裂纹扩展速率。  相似文献   

2.
LC4高强铝合金的慢应变速率拉伸试验   总被引:16,自引:0,他引:16  
采用慢应变速率拉伸 (SSRT)技术测试了LC4铝合金在空气和质量分数为 3.5 %的NaCl溶液中的应力腐蚀断裂 (SCC)行为 .研究了应变速率对铝合金SCC行为的影响和氢在LC4高强铝合金应力腐蚀断裂过程中的作用 .试验结果表明 ,LC4合金具有SCC敏感性 ,在潮湿空气中发生应力腐蚀断裂 ,而在干燥空气中不发生应力腐蚀断裂 .对于长横取向的LC4铝合金试样 ,在应变速率为 1.331× 10 6s 1时 ,其SCC敏感性比应变速率为 6 .6 5 5× 10 6s 1时的敏感性大 .在潮湿空气和阳极极化条件下 ,铝合金的应力腐蚀断裂机理是以阳极溶解为主 ,氢几乎不起作用 .在预渗氢或阴极极化条件下 ,氢脆起主要作用 ,预渗氢时间延长可加速LC4合金的应力腐蚀断裂 .  相似文献   

3.
某7020铝合金地铁列车在检修过程中发现车钩牵引梁存在开裂现象,失效分析结果表明该裂纹性质为应力腐蚀开裂(SCC)。采用断裂力学双悬臂梁(DCB)试样,对高强度7020铝合金的应力腐蚀开裂特征进行了研究。结果表明:7020铝合金在含氯离子的水溶液环境中对SCC敏感。板料的Z-X和Z-Y方向有SCC裂纹萌生,裂纹开始萌生的时间较长,扩展速度较慢,SCC裂纹的特征为水平扩展,表面有呈台级式不连续扩展和群集的现象,开裂面为沿晶扩展,和车钩牵引梁的裂纹特征相同。  相似文献   

4.
应用慢应变速率拉伸应力腐蚀实验方法和恒载荷拉伸应力腐蚀实验方法评价了7A52铝合金焊接试样的应力腐蚀(SCC)敏感性,并对断口微观形貌进行了分析.结果表明:使用5A56焊丝,采用金属焊条惰性气体焊接(MIG)工艺双面焊制成7A52焊接件应力腐蚀敏感性比较低,具有较好的抗应力腐蚀开裂性能;但当使用环境温度较高、施加应力大于90%σp0.2时,也有可能发生应力腐蚀开裂.断口微观分析表明焊接部位普遍存在气孔;高温或高应力下产生SCC开裂的断口存在明显的二次裂纹,并且随着应力水平的增加,二次裂纹增大.  相似文献   

5.
电极极化对铝合金应力腐蚀断裂敏感性的影响   总被引:2,自引:0,他引:2  
为了探讨极化对铝合金应力腐蚀断裂(SCC)敏感性的影响,采用慢应变速率拉伸技术研究了不同恒电位极化条件下7075T6,7075T7351,7075RRA铝合金的应力腐蚀行为.结果表明,在-1 200~-735 mV(vs SCE)电位范围内,无论是阳极极化还是阴极极化,甚至弱极化,都会增加7075铝合金在3.5% NaCl溶液中的应力腐蚀断裂敏感性,无论哪一种热处理状态的7075铝合金在极化电位下的ISSRT均明显高于腐蚀电位下的ISSRT.同时,有阴极极化时ISSRT值随电极极化增强而减小,阳极极化时ISSRT 值有随电极极化增强而增大的趋势.但不同热处理状态的7075铝合金受极化电位的影响程度不同.由此认为,阳极溶解和氢效应都是导致7075铝合金应力腐蚀开裂的重要因素,电化学保护方法并不适用于7075铝合金应力腐蚀断裂的防护.  相似文献   

6.
基于慢应变速率拉伸实验(SSRT),采用恒电流极化、电化学噪声(ECN)与电化学阻抗(EIS)等方法,研究7A04铝合金在3.5%(质量分数)NaCl水溶液中的应力腐蚀开裂(SCC)行为以及Ce~(3+)对其SCC的缓蚀作用,探讨Ce~(3+)对裂纹孕育与发展过程的抑制机理。结果表明:无论是阳极还是阴极极化,均会促进7A04的SCC倾向,前者增加了裂尖的阳极溶解,后者则加速了裂尖的氢脆效应。Ce~(3+)的加入能延缓7A04的SCC断裂时间,但其有效性仅限于裂纹的萌生阶段。由于Ce~(3+)能够抑制铝合金表面的亚稳态点蚀发育和长大,因而使裂纹的孕育时间显著延长,降低了SCC的敏感性。不过一旦裂纹进入扩展阶段或者试样表面有预裂纹,则由于Ce~(3+)很难迁移到裂纹尖端或在裂尖区难以成膜,不能对裂纹的生长起到有效抑制作用,因而无法降低7A04的SCC发展速率。SEM分析表明7A04铝合金光滑试样SCC主要源于亚稳态或稳态点蚀的诱导作用。  相似文献   

7.
高速列车A7N01S-T5铝合金应力腐蚀行为研究   总被引:1,自引:0,他引:1  
文章选取了我国某类型高速列车常用的A7N01S-T5铝合金材料,进行了恒载荷应力腐蚀试验,对A7N01S-T5材料的应力腐蚀机理、应力腐蚀强度因子K1SCC和裂纹生长机制进行了研究.结果表明,A7N01S-T5铝合金的应力腐蚀破坏敏感性很高,其临界应力场强度因子K1 SCC为5.2 MPa.m1/2,仅为断裂韧度K1 C的0.15,对应的临界应力门槛值б为123MPa,仅为拉伸强度бb0.27.裂纹断口面有明显的舌状凸起和凹坑的存在.A7N01S-T5铝合金的应力腐蚀裂纹以沿晶开裂为主,形貌呈树枝状,同时相邻二次裂纹之间有竞争生长的关系.  相似文献   

8.
随着节能、环保要求的日益提高,环境友好型结构材料的开发及应用受到越来越高的关注。镁合金由于对环境污染小、可回收利用率高等优点而极受世人青睐,成为21世纪最具发展前景的商用轻质材料,被广泛应用于航空航天、计算机、通讯等工业领域。然而,镁合金在应用过程中暴露出许多问题。由于镁活泼的化学性质导致镁合金在服役环境下极易受到腐蚀,例如在潮湿大气、海洋、含硫气氛中都能使镁合金发生点蚀、电偶腐蚀、晶间腐蚀等,使得镁合金结构件的整体或局部受到破坏。特别是在腐蚀和外力的双重作用下,镁合金将发生应力腐蚀开裂,导致结构件发生脆断。近年来,由于镁合金应力腐蚀开裂引起的结构失效案例逐年上升,造成了巨大的经济损失。目前,关于镁合金应力腐蚀开裂的研究主要集中于机理、影响因素和防护措施等方面。国内外学者相关研究表明,镁合金应力腐蚀开裂的机理总体上主要分为阳极溶解和氢脆两种理论,其中滑移溶解和氢局部增塑分别为两种理论的主流观点。但由于镁合金材料、服役环境的多样性以及力学、电化学腐蚀行为的复杂性,现有理论机理缺乏普遍适用性,且部分缺少直接实验验证,急需进一步系统研究。镁合金抗应力腐蚀性能受到镁合金服役环境、镁合金本身的加工工艺以及镁合金中的合金元素等诸多因素的影响。因此,依据应力腐蚀机理,结合影响因素,通过合理添加合金元素开发出新的镁合金,镁合金表面激光冲击改性或表面涂层,镁合金热处理、变质处理等方法都能够很好地降低镁合金应力腐蚀开裂的敏感性。特别是添加稀土元素,例如铒、铈等,能够使得镁合金组织优化,且能形成新的稀土相,对降低其应力腐蚀开裂敏感性的效果显著。本文系统归纳了镁合金应力腐蚀开裂的研究进展,分别对镁合金应力腐蚀开裂机理、影响因素以及其防护措施进行了论述,着重介绍了近十年来国内外的相关研究成果,并提出了镁合金应力腐蚀开裂领域未来的研究方向以及亟待解决的问题。  相似文献   

9.
利用电化学技术和U形弯试样浸泡实验研究了16Mn钢及其模拟热影响区(HAZ)在不同pH的碱性硫化物和Cl-介质中的应力腐蚀开裂(SCC)行为与机理.结果表明:16Mn钢原始组织、粗晶组织(空冷组织)和硬化组织(淬火组织)在pH为11.8的碱性硫化物环境中均近似呈钝化状态,维钝电流密度依次降低;随着pH的降低,原始组织和粗晶组织的阳极过程逐渐由钝化态转变为活化态;HAZ中硬化组织、粗晶组织和原始组织在碱性硫化物环境下的SCC敏感性依次降低,其中硬化组织具有明显的SCC特征;随着pH的降低,SCC裂纹有从沿晶裂纹转变为穿晶和沿晶混合裂纹的趋势,并且裂纹的宽度增加.  相似文献   

10.
7系铝合金是一种可热处理强化的铝合金,通过改变热处理工艺的方法可以提高铝合金的抗应力腐蚀性能.本文研究了不同升温时效处理下,铝合金在含硫酸盐还原菌(SRB)模拟海洋溶液中的应力腐蚀行为,并通过应力-应变曲线和断口形貌,对比分析了铝合金在无菌溶液和SRB溶液中的应力腐蚀行为差异.研究表明,升温时效处理可以提高合金的自腐蚀...  相似文献   

11.
为进一步加深对铝合金在Cl-环境下腐蚀行为的认识,通过浸泡试验、金相分析、极化曲线测试、慢应变速率拉伸测试、扫描电镜、透射电镜观察等,研究腐蚀环境对7020铝合金的局部腐蚀和应力腐蚀开裂(SCC)行为的影响,并对二者的相关性进行分析.结果 表明:7020铝合金在50℃下的3.5 %NaCl溶液中浸泡24h,合金局部腐蚀...  相似文献   

12.
铝合金应力腐蚀开裂假定机理的文献综述   总被引:2,自引:0,他引:2  
一、前言 自从1900年第一个铝合金诞生以来,铝合金的应力腐蚀开裂(SCC)问题就成为科学工作者急需解决的一大难题,严重制约了铝合金的应用。早在1925~1928年,由德国的“结构8”合金(6.9%Zn、1.6%Mg、1.3%Mn)制成的板卷在储存中,由于较潮湿空气与板卷内应力的综合作用,放置数天后便自行破裂。1941年J.A.诺克研制出的Al—Zn—Mg—Cu合金用在机翼蒙皮上,使用不久便出现了较长的应力腐蚀裂纹。7079—T6锻件在  相似文献   

13.
采用悬臂梁弯曲预裂纹试样应力腐蚀试验方法,进行了4.5Ni钢在海水环境下应力腐蚀试验和应力腐蚀断裂(SCC)试样断口扫描电镜观察,分析了该钢在海水中的应力腐蚀断裂特征。指出该材料在海水中属SCC不敏感材料。在海水环境中试验所产生的开裂带,SCC作用不明显。在高应力水平下,主要由于裂纹顶端的高塑性变形,裂纹顶端出现的长时间蠕变引起的。  相似文献   

14.
通过慢应变速率拉伸测试、金相、扫描电镜及透射电镜分析等研究了Al-3.88Cu-1.18Mg-0.31Mn铝合金在T6、T8、T3时效状态时的应力腐蚀开裂(SCC)行为。结果表明:在T6、T8及T3时效态下,合金的应力腐蚀开裂敏感性依次降低。合金应力腐蚀与晶间腐蚀具有正相关性,表现为电化学腐蚀特征,晶界与晶内电位差的大小决定了应力腐蚀开裂敏感性的高低,其与晶界及其附近区域的微观组织特征紧密相关。  相似文献   

15.
通过拉伸性能测试、C环应力腐蚀试验、金相分析、扫描电镜和透射电镜观察等研究了7055铝合金T型型材的应力腐蚀开裂(SCC)行为.结果表明:7055铝合金T型型材纵向试样的抗拉强度、屈服强度、伸长率及断面收缩率均大于横向试样的;在间浸腐蚀和恒温恒湿环境下,纵向C环试样的开裂时间均长于横向试样的.型材纵向截面晶粒变形特征明...  相似文献   

16.
镍基合金718是一种高酸性油气井中常用的金属材料,但对其应力腐蚀开裂敏感性及其影响因素的研究较少。利用高温高压反应釜进行应力腐蚀开裂模拟试验,结合扫描电子显微镜(SEM)和能谱仪(EDS)等分析手段研究了温度对718镍基合金在高含H_2S/CO_2环境下应力腐蚀行为的影响。结果表明:在CO_2分压3.5 MPa、H_2S分压3.5 MPa、Cl~-含量150 000 mg/L的模拟环境下,镍基合金718在150,175,205℃下均未发现点蚀和裂纹,应力腐蚀开裂敏感性较低;但随温度升高,镍基合金718的C环应力腐蚀试样表面的钝化膜出现明显的硫化和颗粒状的腐蚀产物,并逐步团聚形成点蚀源。  相似文献   

17.
压力管道中应力腐蚀开裂(SCC)是奥氏体不锈钢的主要失效形式之一,同时冷加工变形对材料的力学性能和裂纹的萌生及扩展会产生一定影响。本工作首先利用疲劳拉伸机获取304不锈钢不同冷加工硬化下的材料本构参数,同时利用有限元仿真软件ABAQUS建立了SCC裂纹裂尖宏观分析模型及子模型,研究不同加工硬化下304奥氏体不锈钢材料的SCC裂纹裂尖应力应变、J积分及裂纹扩展速率的影响。结果表明,材料在20%冷加工率变形内,随着材料加工硬化程度的增加,SCC裂纹裂尖Mises应力、J积分逐渐增大,裂纹裂尖应变(PEEQ)减小,一定程度加工硬化会促进和加速304不锈钢发生应力腐蚀开裂。  相似文献   

18.
以X100、X80管线钢为研究对象,通过在外加电位条件下的慢应变拉伸速率试验(SSRT),获取管线钢材料在空气中和不同外加电位下的慢拉伸应力腐蚀的应力-应变曲线,分析其应力腐蚀敏感性可知:外加电位对X100和X80管线钢在3.5%NaCl中性溶液中的SCC敏感性和腐蚀开裂机理有显著影响。相同应力腐蚀条件下,X100管线钢的SCC敏感性相对于X80管线钢更低。结合断口微观形貌和极化曲线快、慢扫测试分析X100/X80耐腐蚀性能的特征和差异,可以得出X100和X80管线钢材料在不同外加电位条件下的应力腐蚀机理类型:当外加电位高于-395 mV时,金属处于活化溶解状态;当外加电位置于-395~-462 mV(X80钢)或-395~-504 mV(X100钢)时,机理为膜破裂-阳极溶解(AD)和氢致开裂(HIC)型;如果外加电位进一步降低,机理表现为氢致开裂型。  相似文献   

19.
本文介绍了低合金高强钢制的球罐在定期检验时发现的焊接接头裂纹。作者从应力腐蚀裂纹和氢致裂纹的机理、影响因素、形貌、发生区域、发生时间来论证球罐的应力腐蚀裂纹和氢致裂纹的内在机理是一样的,属于氢致开裂机理。理论分析和检验检测实践证明在球罐的焊接加工阶段采取措施防止氢致裂纹就能大大降低应力腐蚀裂纹敏感性。  相似文献   

20.
用慢应变速率拉伸测试、金相(OM)、扫描电镜(SEM)及透射电镜(TEM)分析等方法研究了Al-3.88Cu-1.18Mg-0.31Mn铝合金在T6时效状态下的应力腐蚀开裂(SCC)行为。结果表明:随着时效时间的延长,合金的应力腐蚀开裂敏感性逐渐降低。合金应力腐蚀与晶间腐蚀具有正相关性,其本质是晶界与晶内存在电位差,形成电偶腐蚀,在应力作用下,导致晶界连续腐蚀。在时效过程中,晶界S'(S)相由连续分布逐渐转变为断续分布,晶内析出相由GPB区逐渐转变为S'(S)相,并形成PFZ。这样的微观组织转变使合金应力腐蚀开裂敏感性随着时效的进行逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号