首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zakharov方程的扩展的Jacobi椭圆函数展开解   总被引:1,自引:0,他引:1  
将改进的Jacobi椭圆函数展开法应用到Zakharov方程,比较方便地得到新的解析周期解(包含冲击波解、孤波解和双曲函数解).这种方法也适用于其他非线性方程或方程组.  相似文献   

2.
对(2+1)维KdV方程进行研究,基于Wronskian行列式和Hirota双线性方法,应用行列式的性质,给出(2+1)维KdV方程Wronskian表示的孤子解.利用Hirota方法,在(2+1)维KdV方程经典孤子解的基础上,得出方程新的单孤子解.通过观察Wronskian行列式元素的特征并分析所满足的色散关系,重新定义行列式元素,利用Hirota方法和Wronskian技巧,构造出新的2 N阶Wronskian行列式解,并应用行列式恒等式说明双线性型的孤子方程有Wronskian解.通过直接计算证明了两种新解的一致性.  相似文献   

3.
利用Hirota双线性方法研究了(2+1)维广义5阶KdV方程,得到了单孤子解、双孤子解和三孤子解.通过进一步分析得到N-孤子解析解的表达式.借助计算机符号计算得出多孤子演化图形,展示了多孤子之间的相互作用.  相似文献   

4.
应用推广的Tanh函数展开法求解一般化KdV方程新的精确解,并对精确解给出了相应的数值算例.  相似文献   

5.
研究了一个(3+1)-维Korteweg-de Vries (KdV)方程的呼吸子解和孤子分子的共振条件。首先,借助Hirota双线性导数法对一个(3+1)-维KdV方程进行双线性化,利用双线性形式求出该方程的呼吸子解。然后,在一定参数条件下,呼吸子解可以转换为其他类型的非线性波形态,比如W型波、双峰孤波、平行孤波和周期孤波等。最后,求出(x,y)、(x,z)、(x,t)、(y,z)、(y,t)、(z,t)等平面上的孤子分子的共振条件,并进行了动力学分析。  相似文献   

6.
针对组合KdV方程,利用Jacobi椭圆函数展开法和修正的双曲正切函数展开法,分别研究了该类方程的椭圆余弦函数解、第三类Jacobi椭圆函数解和奇异行波解,给出了KdV方程新的周期解,所用方法同样可应用于求解其他类非线性方程.  相似文献   

7.
研究了含有各种形式微扰项的KdV方程,利用试探函数法构造它们新的精确解.通过观察与尝试,对解的形态作预先假设,代入原方程,将一个难于求解的非线性偏微分方程化为一组易于求解的非线性代数方程,然后用待定系数法确定相应的常数,最后求得了含有各种形式微扰项的KdV方程的精确解.  相似文献   

8.
Boussinesq方程的Jacobi椭圆函数精确解   总被引:1,自引:0,他引:1  
对Jacobi椭圆函数展开法进行了深入研究,提出一种扩展的Jacobi椭圆函数展开法,在符号计算软件Maple下,对Boussinesq方程求解,得到该方程形式更为丰富的Jacobi椭圆函数周期解,其中包括一些新解.在极限情况下,一部分解退化为三角函数解和孤立波解。另外,该方法能应用到其他的非线性发展方程。  相似文献   

9.
利用扩展的Jacobi椭圆函数展开法构造一类变系数耦合KdV方程组的精确解。通过求解非线性代数方程组获得了不同情形下的孤立波解,在极限的情况下可以得到相应的类孤立波解、类冲击波解或类三角函数型解。  相似文献   

10.
对扩展的Jacobi椭圆函数展开法进行了改进,并将其应用到一类常微分方程中,比较方便地得到了该方程的一系列新的精确解,在极限情况下可得到相应的孤立波解和单周期波解.许多非线性发展方程(如Modified Improved Boussinesq(MIB)方程,非线性薛定谔方程,MKdV方程等)都可借助此方程得到其相应的新的精确解.  相似文献   

11.
在双曲正切法,齐次平衡法和辅助方程法的基础上,利用一类耦合的Riccati方程组的某些特解,并借助计算机代数系统Maple,构造了非线性(2 1)维Burgers方程的若干新的精确解.  相似文献   

12.
应用平面动力系统分支理论研究了当β〉0,τ〈0时的一类广义KdV方程ut+au^βux+bu^τuxxx=0,证明了孤立波,扭子波与反扭子波,周期波解的存在性,并得到了所有可能的孤立波解的精确参数表示.  相似文献   

13.
在寻求非线性发展方程孤子解的过程中,Hirota提出了一种有效的方法。在Hirota方法的基础上,构造出(2+1)维KdV方程的Wronskian行列式解。运用了Wronskian技术,其优势在于解的验证,最终将化归为行列式的普朗克关系式。  相似文献   

14.
F展开法综述和两个广义KdV方程的孤立波解   总被引:3,自引:0,他引:3  
对求解非线性方程的F展开法进行了综合论述,揭示了方法的内在本质,指出了F展开法可能的发展方向,并结合F展开法的最新进展,给出了求解具有高次非线性项的非线性偏微分方程的一个辅助常微分方程作为说明的例子,用其得到了两个具有高次非线性项的广义KdV方程的孤立波解。与已有文献相比较,这种方法更简练,结果更具有一般性.对于类似的方程同样可以用此方法求其解。  相似文献   

15.
一类广义KdV—Burgers型方程的整体解   总被引:1,自引:0,他引:1  
  相似文献   

16.
广义变系数KdV,mKdV方程的精确类孤子解   总被引:3,自引:0,他引:3  
利用截断层开法和延拓齐次平衡法同时求出了广义变系数KdV方程和广义变系数mKdV方程的精确钟状类孤子解,其基本思想是:设方程的解形式为u(x,t)=n↑∑↑m=0υm(t)F^m,F=e^α(ζ ζ0)/1 e^α(ζ ζ0)代入给定方程确定出n,并令F的各次幂项的系数为零,得到超定可积分方程组,由此求出给定方程的精确类孤子解。  相似文献   

17.
本文给出的求解KdV方程的一种代数方法,利用这种方法可以得到KdV方程的3-参数解族和4-参数解族的解析显式,证明了由反散射变换(IST)得到的孤立子解是这里给出了多参数解族的特例-经适当的约化和双曲函数的恒等变形,由这些参数解族可得经Backlund变换产生的多孤子解。  相似文献   

18.
利用扩展的Jacobi椭圆函数展开法研究了Chen - Lee - Liu方程的精确解,所得解包括该方程的系列周期解和孤子解.特别地,当m→1和m→0时,得到了该方程的三角函数解和双曲函数解的精确表达式.绘制了该方程的三角函数解和双曲函数解的孤波图.其二维图像显示,孤立波的振幅不随时间的变化而发生变化,但其空间位置发生变化.  相似文献   

19.
20.
利用Fan子方程法并借助符号计算软件Maple,研究(2+1)维Kaup-Kupershmidt方程,获得了该方程丰富的精确行波解:有理函数解、三角函数解、双曲函数解、指数函数解、双周期Jacobi椭圆函数解、Weierstrass椭圆函数解,并给出相应的波形图。结果表明,该方法是求解非线性偏微分方程精确行波解的一种有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号