首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氢气作为一种清洁能源,被认为是化石能源最理想的替代者。安全、高效且稳定的储氢材料的开发是当前氢能源应用研究中面临的最大挑战之一。氨硼烷(NH3BH3,AB)因其较高的储氢密度(146 g·L-1,质量分数为19.6%)、安全无毒及高化学稳定性等特性成为一种重要的化学固态储氢材料。氨硼烷水解制氢反应条件温和,但需要在合适的催化剂存在的条件下进行。通过调节催化剂的活性组分、颗粒尺寸、活性组分的分散度、电子结构等,可显著提高氨硼烷水解产氢速率。综述了近年来氨硼烷水解制氢反应中镍基催化剂的研究进展,重点概述了镍单质、镍化合物以及镍合金催化剂在氨硼烷水解产氢中的应用,阐述了氨硼烷水解产氢反应机理,展望了氨硼烷水解产氢的发展趋势以及面临的挑战。  相似文献   

2.
<正>氢能源是一种新型无污染的清洁能源,但如何实现安全而经济的储存运输是关键技术之一。金属氢化物储氢装置将储氢合金(一般为AB5型、AB2型、AB型、镁系的储氢材料)以一定的方式装填到容器内,利用储氢合金的可逆吸放氢能力,达到储存、净化氢气的目的。与高压气态储氢相比,金属氢化物储氢是一种固态储氢技术,具有储氢压  相似文献   

3.
氢气因清洁和可再生等优点,被认为是一种具有发展前景的清洁能源,在未来替代传统化石燃料的可再生能源体系中具有重要地位。电化学分解水是一种高效且环境友好的制氢途径,在电解水制氢技术的发展中,高效电催化析氢催化剂的作用显得尤为重要。二硫化钼(MoS2)具有较低的析氢吉布斯自由能及耐酸碱腐蚀等优点,因此,MoS2作为高效的电催化析氢催化剂一直是研究热点。阐述了MoS2的电催化析氢机理,综述了不同形貌MoS2在电催化析氢中的应用,通过对MoS2电催化剂进行改性来优化其催化活性。研究表明通过改善MoS2边缘位点的催化活性、增加活性位点的数量等方法能够极大地改善MoS2电化学析氢过程中的催化活性。  相似文献   

4.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤、经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPaH2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式,得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/molH2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

5.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤,经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPa H2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/mol H2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

6.
传统能源的短缺以及化石燃料直接燃烧后所产生的污染,促使人类必须探索新的可替代能源。氢气无毒、无污染、来源广泛,是第三次能源革命的重要媒介。工业制氢会产生CO、CO2等副产物,故而提升氢气浓度,剔除这些杂质,是制氢必不可缺的环节。混合导电氢分离膜具有高效的氢分离能力,是应用在该环节的最佳选择之一。BaCeO3是单相钙钛矿结构,在其“B”位掺杂后,质子导电能力提升,具备更佳的氢渗透性,但这类材料在湿润CO2气氛中化学稳定性较差。合理的掺入其他离子以及添加金属相,能有效改善材料的氢渗透率或化学稳定性。本工作使用溶胶凝胶法制备了BaCe0.7In0.1Ta0.1Y0.1O3-δ粉末材料,并与Ni粉混合共烧制备质子-电子混合导电金属陶瓷氢分离膜。通过XRD、SEM表征了样品的相结构和微观形貌,并测试了其电导率,氢渗透率,以及在湿润CO2环境中的短期稳定性。结果表明,In3+和Ta...  相似文献   

7.
随着化石燃料的不断使用,CO2的排放量显著上升,从而严重影响了当今生态环境,为了减少CO2的排放,利用新能源代替化石燃料迫在眉睫。氢能源具有高热值、CO2零排放的优点,是化石燃料的良好替代品,但是其密度小、沸点低导致其储存难度大,从而限制了其大规模应用。现阶段氢能源采用高压储氢罐进行储存,存在储氢容量低、运输成本高以及氢脆现象等缺点。新型储氢材料和技术的开发是氢能源大规模商业应用的关键。空心玻璃微球(Hollow Glass Microspheres, HGMs)作为一种中空小尺寸耐压材料,具有良好的稳定性、储氢容量大、成本低、无氢脆等优点,在储氢方面有着巨大的潜力。对空心玻璃微球储氢的进展进行综述,介绍空心玻璃微球储氢机理、影响因素等,并进一步重点介绍了氢气释放速率以及响应时间的研究。  相似文献   

8.
以H2反应球磨法制备了镁基储氢材料,用储氢材料加热释放出的氢使CS2发生加氢反应生成H2S。X射线衍射分析表明,Mg球磨过程中与H2反应生成晶态MgH2,再经加热后释放出氢又成为晶态Mg;CS2与MgH2放出的氢反应生成H2S,用Pb(NO3)2溶液吸收H2S可得到晶态PbS。不同温度下的加氢实验表明,温度过低或过高都不利于储氢材料放氢与CS2加氢反应之间的匹配,只有在特定温度下才能使储氢材料的氢利用率达到最大值。  相似文献   

9.
<正>近日,上海交通大学材料科学与工程学院氢科学中心的邹建新教授课题组与邓涛团队的邬剑波特别研究员课题组合作在镁基储氢材料领域取得重要研究进展。该工作以Mg基储氢材料为对象,研究了Pt纳米催化剂包覆对Mg储氢性能的影响,通过原位TEM观察MgH2放氢过程,结合DFT理论计算,深入研究了过渡金属纳米催化  相似文献   

10.
甲酸(FA)因具有储氢量高、易加注等优点而成为极具应用前景的新型储氢材料, 寻求高效率催化剂对于解决甲酸制氢反应动力学缓慢的问题尤为重要。本工作以聚乙烯亚胺修饰石墨烯(PEI-rGO)作为催化剂衬底, 通过湿化学法制备PEI-rGO担载型AuPd纳米复合材料(Au0.3Pd0.7/PEI-rGO)。Au0.3Pd0.7/PEI-rGO催化剂在催化FA制氢的反应中表现出极其优异的活性, 在无添加剂辅助下的转化频率(TOF)为2357.5 molH2∙ molcatalyst -1∙h -1, 高于大多数相同反应条件下的异相催化剂。这归因于PEI-rGO衬底与AuPd纳米颗粒之间的强相互作用对金属活性组分的尺寸、分散度和电子结构的调控。此外, 循环测试结果表明该催化剂的稳定性良好。  相似文献   

11.
镁氢化物的结构热力学稳定性高、释放氢动力学缓慢等延缓了其实用化进程,研究者通过向其掺杂适量的具有催化效应的合金元素或化合物来改善该问题。MgH2氢化物释放氢难易程度与其反应焓变和活化能有关,其机制主要有:较大颗粒或大块材料中镁形核生长——MgH2基体表面的氢原子扩散模型;微米或纳米级的Mg形核生长——新形成镁外层的氢原子扩散模型。掺杂金属元素(M、RE)或二元氧化物或卤化物的催化作用在于形成的(M或RE)-H削弱了Mg-H键的结合能力,在机械球磨的协助下,二元氧化物或卤化物促进MgH2形成丰富的缺陷并增大其比表面积、诱导Mg表面改性、激发Mg-H解离等。掺杂三元或多元化合物的贡献在于改善复合材料的微观特性、降低释放氢的起始温度和释放氢反应的活化能、提高释放氢速率。掺杂化合物对MgH2的催化机制主要为:调整了MgH2释放氢的反应途径、增加释放氢的反应活性点、在MgH2基体中分布均匀、具有独特的化学活性、与MgH2反应原位形成的产物——金...  相似文献   

12.
氢的燃烧热值高、储量丰富、燃烧产物零污染,被认为是理想的能源载体。氢能的发展对“双碳”目标的实现具有重要的支撑作用,而氢能的发展又离不开高密度、低成本的储氢材料。La-Mg-Ni系A2B7型储氢合金是在La-Ni二元合金的基础上发展起来的一类新型储氢合金,具有储氢容量高、原料成本低等优势。Mg加入到La-Ni合金后进入到[A2B4]亚单元中,抑制了氢致非晶化现象,使结构保持稳定,加速了合金的实用化进程。La-Mg-Ni系A2B7型储氢合金本征储氢容量可达到1.80%以上(质量分数),显著高于已经商品化的AB5型储氢合金。La-Mg-Ni系A2B7型储氢合金的晶体结构可调控性强,并且容易受到组成与制备条件细微变化的影响。基于以上认识,重点关注了关于La-Mg-Ni系A2B7型储氢合金组成与制备技术等相关的研究报道,较为系统地综述了元素取代和制备技术等...  相似文献   

13.
氢化镁(MgH2)作为一种固态储氢材料,因其安全性高、储氢量大及镁资源丰富等优点,吸引了大量的学者对其进行研究。然而其稳定的热力学性能、较差的动力学性能及欠佳的循环稳定性导致其商业化道路受阻。采用一步溶剂热法和高温碳化法制备了以廉价生物质原料为基体的非金属磷掺杂碳基材料(P/BC),并通过进一步的高能球磨将其引入MgH2储氢体系中,得到MgH2@P/BC复合储氢体系。结果表明:P/BC降低了MgH2晶粒的尺寸大小,且极大地提升了该复合储氢体系的储氢性能,使其在400℃下,10min内可释放约6%的氢气,同时该体系的放氢活化能相比纯MgH2体系降低了16.77kJ/mol。P/BC材料较大的比表面积和优异的孔隙结构,增加了氢气的吸附速率并提供更多的活性位点,如表面缺陷和多相界面等。此外,P元素的掺杂可以调控碳基体的表面电子结构,与多孔碳共同形成了催化-限域效应,进而对复合储氢材料的吸放氢性能起到了积极的促进作用。  相似文献   

14.
机械合金化制备镁系储氢材料的研究进展   总被引:4,自引:2,他引:2  
机械合金化法是新近发展起来的制备镁系储氢材料的较佳工艺.综述了国内外采用该法制备镁系储氢材料的研究进展情况,报道了机械合金化法制备MgH4、Mg2Ni、多元镁基储氢合金、非晶态镁系储氢合金及纳米复合镁系储氢材料的最新研究成果,总结认为,机械合金化可以显著改善镁系储氢材料的动力学性能和电化学性能,提高储氢量.  相似文献   

15.
氢能的有效开发和应用主要需解决氢的安全、高效储运瓶颈问题。MgH_2具有高储氢容量、资源丰富以及成本低廉等优点,被认为是最具发展前途的一类储氢材料。但是,MgH_2较高吸放氢温度和较慢吸放氢速率限制了其实际应用。核壳结构纳米镁基储氢材料有助于材料储氢性能的改善,目前已取得了大量成果。本文针对国内外纳米镁基核壳结构储氢体系研究现状,归纳了该类储氢材料的制备方法,重点阐述和总结了其吸放氢热力学动力学性能、微观结构、物相变化,并对该领域的研究成果和方向进行了总结和展望,指出调控核壳结构镁基材料的纳米尺寸、添加高效纳米催化剂及其综合协同作用是镁基储氢材料领域未来的研究趋势和重要研究方向。  相似文献   

16.
贾飞宏  卫学玲  包维维  邹祥宇  李妍 《功能材料》2022,(11):11037-11045
氢能作为一种高能量密度、低分子质量以及无污染的绿色能源,未来有望替代传统能源。电解水制氢过程简单且是生产高纯度氢的重要方法,但水电解过程中反应动力学缓慢,严重影响电解水制氢的效率。过渡金属硫化物(TMSs)催化剂由于其低廉的价格和优异的电催化性能而成为研究重点。综述了TMSs催化剂最新研究成果和应用,以氢析出反应(HER)和氧析出反应(OER)的反应机理为出发点,通过电化学测试和电极表征的评估方法,重点介绍TMSs催化剂的制备方法及分析其在电催化水解制氢技术的研究进展。并针对TMSs催化材料面临的发展和问题进行讨论,为进一步提高TMSs的电解水制氢性能提供了崭新的思路。  相似文献   

17.
稀土因性质活泼被以单质或者中间合金的方式添加到镁基储氢合金中形成稀土-镁基体系储氢合金,该合金由于具有优良的储氢性能而备受关注。但是目前缺少多元系稀土-镁基合金相图的指导,难免在设计材料配方时出现盲区,继而陷入"炒菜"式的摸索之中,缺乏针对性。储氢材料的吸放氢反应动力学研究,目前绝大多数的实验反复测定恒温条件下的反应分数与时间的关系上,很少研究各种因数,诸如温度、气相分压、颗粒大小等对反应速率的影响,更谈不上颗粒分布、变温变速等对反应速率的影响。基于热力学和动力学计算,研究了Mg-Ni-RE(La,Nd,Ce,Y)-H多元系,通过引入氢组元对比说明清楚相关储氢合金与金属氢化物的热力学稳定性的差别,利用CALPHAD技术预报多元系的压力-组成-温度(PCT)曲线,结合原位高温XRD和高分辨透射电镜(HR-TEM)结果,阐释了储氢合金吸放氢的热力学机制。同时,通过研究恒温和变温条件下氢化还原反应动力学模型,将吸放氢反应分数表达为温度、压力、颗粒大小、颗粒形貌等因素的函数,不但简化了计算,而且还便于从理论上对各种物理量进行讨论。引进了一个"特征时间"的新概念,它将在储氢材料的研究中发挥重要的作用。  相似文献   

18.
本工作构建了稀土掺杂的储氢合金体系,通过提高其稀土氢化物的催化能力来改善Mg-RE系储氢合金的性能,并分析了不同稀土掺杂后合金性能的差异,以获得改善其热力学和动力学性能的途径。通过真空感应熔炼制备了Mg90Ce5RE5(RE=La、Nd、Sm、Y)合金,并分析了其相应的物相组成和微观结构。同时,采用等体积方法测试了Mg90Ce5RE5不同温度下的压力-温度-组成(PCT)曲线和等温吸放氢动力学性能。结果表明,氢化后的样品均是由MgH2相和相应的稀土氢化物REH2+x相组成的复合材料,然而在放氢后,仅MgH2相发生分解反应,生成Mg相并放出氢气。原位生成的REH2+x相不发生分解,通过降低Mg-H键的稳定性、合金的表观活化能以及提升H原子的扩散速率,来促进Mg与MgH2的可逆转化。这导致了不同合金的PCT平台压高度的变化,从而影响其热力和动力学性能。...  相似文献   

19.
氢能是全球公认的清洁能源,被认为是化石能源的理想替代品,具有广泛的市场前景。铝价格低廉、密度较低且能量密度高,铝水解产氢是一种有效提供氢能的方法。简述了铝水反应的原理,介绍了目前国内外主流的3种铝基材料水解制氢技术(纯铝与酸碱溶液反应、机械球磨法制备铝基复合材料、熔铸法制备铝基低熔点合金)的研究进展,并探讨了不同技术的反应原理、不同添加物的作用机理,对比了各种技术的特点,提出熔铸法制备低熔点合金将成为日后研究的重点,最后对未来熔铸法制备铝基低熔点合金的前景进行了展望。  相似文献   

20.
利用氢化燃烧合成法制备了镁基储氢合金Mg-Mg2Ni,分析了镁镍配比和镁粉粒径对HCS产物组成和储氢性能的影响.研究结果表明,HCS产物主要由Mg2Ni及Mg的氢化物MgH2、Mg2NiH4和Mg2NiH0.3组成,没有Ni相的存在,当Mg:Ni>2:1时,较粗镁粉原料的使用对燃烧合成产物Mg2Ni的氢化活性影响不大,但会降低反应剩余Mg的氢化活性.随原料中镁镍配比的增加,HCS产物中MgH2的相对含量逐渐增加,HCS产物的氢化动力学性能逐渐降低,吸氢量却先增加后降低,Mg:Ni=7.85:1时具有最大的吸氢量4.87wt.%,同时由较细镁粉得到的HCS产物的氢化速率和吸氢量大于较粗镁粉,但两者之间的差别会随镁镍配比的降低而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号