首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铀是一种非常重要的战略核材料,纯铀又是化学活性极强的材料,在大气中放置很短的时间就会在其表面产生氧化和腐蚀.因此,对铀材必须实行涂层保护或表面合金化才能增强其抗腐蚀效果.从离子注入、离子镀以及表面合金化处理3方面综述了铀及铀合金的防腐涂层方法的研究.  相似文献   

2.
铀的腐蚀与防腐蚀技术研究   总被引:3,自引:1,他引:2  
铀是一种非常重要的战略核能源材料,核能技术的和平利用扩大了铀材料的应用领域.纯铀又是化学活性极强的材料,裸露的纯铀在大气中放置很短的时间就会在其表面产生氧化和腐蚀,这对材料的使用和存储带来危害.因此,对铀材必须实行表层保护或整体合金化才能增强其抗腐蚀效果,从而达到预防铀的老化和延长其存储期的目的.从铀材料的应用对抗腐蚀性能要求出发,重点论述了铀的腐蚀行为、不同温度和湿度下铀的氧化反应规律以及对其研究的历史和现状等.综合评述了铀的防腐涂层方法的研究(铀的整体合金化、表面涂层技术、利用化学反应制备保护层、离子注入保护和激光表面改性等5个方面).  相似文献   

3.
金属铀的化学性质十分活泼,极易发生氧化腐蚀。本文采用磁过滤多弧离子镀在金属铀表面制备Ti过渡层,然后采用非平衡磁控溅射离子镀技术制备了Ti、TiN单层膜及Ti/TiN多层薄膜,以期改善基体的抗腐蚀性能。采用X射线衍射、极化曲线、盐雾腐蚀试验对镀层的结构、表面形貌、抗腐蚀性能进行了分析。结果表明,采用磁控溅射在金属铀表面制备一层Ti/TiN多层膜后,多层膜界面较清晰,大量的界面可终止柱状晶的生长,细化晶粒,提高镀层的致密性,有效地改善了基体的抗腐蚀性能。  相似文献   

4.
电弧喷涂金属涂层作为钢结构表面防护的一种重要措施,经过几十年的发展,已成为成熟的表面工程技术和产业。同时,随着新的喷涂工艺、设备和材料的不断研发,电弧喷涂金属涂层应用领域日益广泛。与此同时,使用电弧喷涂技术进行防腐的缺点也日益突出,尤其是喷涂过程中存在有害物质排放等问题,严重制约了其发展。电弧喷涂制备的涂层孔隙率低、微观组织致密、结合强度高且经济性好。相比于其他传统防腐技术,电弧喷涂金属涂层应用于钢结构的表面防护具有如下优势:(1)电弧喷涂沉积效率高、操作容易,便于现场施工;(2)涂层在海洋苛刻腐蚀环境中服役时间长。然而,电弧喷涂耐海水腐蚀金属涂层的服役环境介质不同,对涂层的耐蚀性能提出了更高的要求。因此,近几十年来除研究电弧喷涂工艺参数外,科研工作者们着力研发多功能、高性能的喷涂材料,并取得了丰硕成果,同时充分利用电弧喷涂技术的优势可显著提高涂层的性能。目前电弧喷涂金属涂层材料正朝着复合化、新型化方向发展。目前,用于钢结构表面防护且已取得广泛应用的喷涂材料有锌/铝及其合金、镍基合金、铁基合金和铜基合金等。其中锌、铝及其合金是使用最早且最广泛的喷涂材料;镍基合金可通过加入铬、钼等抗点蚀、缝隙腐蚀的合金元素,提高材料的耐蚀性能;铁基合金中添加少量Mo等元素,能有效抑制晶界腐蚀发生;铜基合金中加入1%的锡,能抑制合金脱锌过程并提高其力学性能。近几年的研究重点为多种合金材料复合及新型合金材料的使用,以电弧喷涂技术为手段制备耐腐蚀涂层,可实现涂层功能和性能的双提升。本文以分析钢结构在近海岸海洋环境各区域带的腐蚀规律为基础,比较了目前用于钢结构表面腐蚀防护的方法及其优缺点,阐述了电弧喷涂涂层的研究现状和防腐机理。从电弧喷涂耐海水腐蚀涂层的微观组织结构、涂层性能及防腐机理等方面,分析了电弧喷涂金属涂层防腐面临的问题并展望了其前景,以期为工业领域钢结构表面的长效防护提供参考。  相似文献   

5.
镁合金具有密度小、阻尼减振降噪性好和导电性好等优点,是目前工程应用中最轻的金属结构材料.但镁合金电极电位低、易腐蚀的缺点,限制了其在工业上的应用.目前,表面涂层防护技术是提高镁合金耐腐蚀性最有效的方法之一.氧化石墨烯(GO)因具有显著的热学和阻挡性能,在金属保护等方面具有广阔的应用前景.基于GO 设计的涂层可以对腐蚀性介质提供良好的物理屏障,已成为防腐蚀涂层的候选材料之一.本文对单一组分的GO 纳米片本身存在团聚和相容性差等局限性问题提出了解决方案.主要回顾了GO 复合涂层制备方法和类型,总结了在镁合金防腐领域的最新研究进展,并深入分析了其保护机理.最后,对GO运用到的镁合金表面腐蚀防护涂层的未来发展趋势进行展望.重点阐述了镁合金表面氧化石墨烯复合涂层的制备方式以及种类,综合说明了镁合金表面氧化石墨烯涂层的研究进展以及腐蚀保护机制.  相似文献   

6.
齐昱  白佳乐  吴鹏  王雨  张琰图  李雪礼 《功能材料》2024,(4):4051-4061+4071
防腐涂层作为一种关键的防护手段,被广泛应用于延长材料和结构的寿命,保护其免受腐蚀和损害。然而,单一防腐涂层常常难以满足复杂环境中的多重挑战。为了克服传统防腐涂层的限制,人们开始寻求新的防腐涂层技术,功能性复合防腐涂层应运而生。介绍了防腐涂层的研究现状、制备方法、性能以及在实际应用中的表现。阐述了功能性复合防腐涂层的种类和组成,对当下的功能性复合防腐涂层现状进行了分析总结,并对其应用前景进行了展望。  相似文献   

7.
金属铀热氧化腐蚀的红外和拉曼光谱分析   总被引:1,自引:0,他引:1  
为了进一步认识金属铀环境腐蚀的规律,采用傅里叶变换红外和显微激光拉曼光谱技术,获得了金属铀与空气热氧化反应产物的红外和拉曼光谱图.实验结果表明,随着温度的升高,铀表面首先出现活性腐蚀亮斑,并逐渐积累长大,主要氧化产物UO2在260℃以上开始转化为U3O8.同时,200℃以上温度条件下,铀表面的热氧化腐蚀速率明显高于较低温度时的氧化反应.研究结果将为改善防腐措施、提高核燃料的安全可靠性提供有价值的参考信息.  相似文献   

8.
为了改善金属铀的摩擦磨损和抗腐蚀性能,采用等离子体浸没离子注入沉积(PIII&D)技术在铀表面氮化,再沉积Ti/TiN多层膜.利用扫描电镜和X射线衍射分析了薄膜的形貌和组织结构;对薄膜的摩擦磨损和抗湿热腐蚀性能进行了测试.结果表明:薄膜表面致密,界面晶粒柱状生长方式被阻断,晶粒细化;薄膜为Ti和TiN的双相结构,衍射谱中出现了UO_2和U_2N_3的衍射峰;薄膜大大提高了铀基体的摩擦磨损和抗湿热腐蚀性能,调制周期对薄膜性能的影响较大.  相似文献   

9.
采用真空电弧离子镀技术在K465镍基高温合金基材上制备了AlYSi沉积-扩散型涂层。研究了真空退火处理前后涂层的组织结构,以及涂层在900℃下的燃气热腐蚀行为。结果表明,经真空退火处理后的AlYSi涂层主要由β-NiAl相组成,与基体结合良好;K465合金在热腐蚀过程中表面产生了大量的腐蚀剥落;AlYSi涂层在热腐蚀过程中表面形成了Al2O3保护膜,显著提高了合金的抗燃气热腐蚀性能。  相似文献   

10.
我国海洋工程装备制造业正处在生存与发展的关键阶段,防腐涂层是降低基材腐蚀速率、提升其服役寿命最有效的方式之一。导电聚合物涂层由于其绿色环保、制备简单等优点及独特的导电与防腐机制,使其在金属腐蚀防护领域得到了广泛的应用。本文归纳总结了导电聚合物涂层的防腐机制,介绍了采用化学氧化和电化学合成两种方法制备导电聚合物涂层的现状,重点阐述了导电聚合物涂层的掺杂改性、共聚改性、分层设计3种改性技术对涂层耐蚀性能的提升效果,最后提出了导电聚合物涂层在腐蚀防护领域可能存在的研究热点和发展趋势。  相似文献   

11.
对耐熔融锌液腐蚀材料的发展现状进行了分析,根据近些年国内外对耐锌腐蚀材料的研究成果,可将研究方向分为两大类:采用整体耐腐蚀的材料和通过表面处理技术提高耐腐蚀性。两个研究方向都获得了一定的效果,单金属因材料本身性能或成本过高等问题而受到限制,一些耐锌液腐蚀能力较强的合金材料在近些年被研制出来,具有一定的应用前景。而采用金属表面处理提高耐锌液腐蚀的方法将成为今后的研究重点,实验证明热喷涂技术制备涂层的发展对提高耐蚀性具有明显效果。  相似文献   

12.
陶瓷-树脂复合涂层兼具陶瓷材料和树脂材料的优异性能,具有良好的力学性能、摩擦磨损性能、耐腐蚀性能等,可用于防腐、减摩等领域,是当前热喷涂领域的新兴研究方向。如在先进航空发动机制造领域,通过在陶瓷涂层中添加树脂材料以增加涂层孔隙率,使高温可磨耗封严涂层的可磨耗性显著提升。然而,陶瓷与树脂的热物理性质和化学性质差异较大,导致复合涂层沉积时粒子的熔融沉积行为呈现复杂多样性,对涂层性能的影响规律尚不清晰。目前,国内外对陶瓷-树脂复合涂层的制备和应用开展了大量的研究,在不同热喷涂方法下,陶瓷材料和树脂材料对复合涂层结构、性能的影响取得了显著成果。基于此,本文综述了采用火焰喷涂、等离子喷涂、反应等离子喷涂三种热喷涂技术制备陶瓷-树脂复合涂层的国内外相关研究;比较分析了喷涂过程中,不同热喷涂技术对陶瓷材料与树脂材料的影响规律;梳理了等离子喷涂工艺的优化方法;展望了未来陶瓷-树脂复合涂层的研究重点与应用方向。  相似文献   

13.
宋慧瑾  鄢强  朱晓东  董志红 《材料导报》2017,31(Z1):528-531
采用小多弧离子镀制备了TiN涂层。通过金相显微镜、分析天平及X射线衍射(XRD)研究了有无镀覆TiN涂层的活塞杆材料(38CrMoAl)在高温、水蒸气及酸性条件下的耐腐蚀性能。结果表明,200℃下两种样品未被氧化,400℃下38CrMoAl样品表面氧化,而镀有TiN薄膜的样品表面无明显变化,600℃下镀有TiN涂层样品氧化;3种腐蚀条件下,有TiN涂层的38CrMoAl活塞杆比未镀覆涂层的活塞杆耐腐蚀性能好。  相似文献   

14.
从金属植入体与生物环境的界面反应,以及钛植入体表面现阶段存在的主要问题出发,叙述了近年来钛表面生物活性、生物相容性、血液相容性、抗菌性涂层的制备、结构及性能,重点总结了应用等离子体喷涂技术制备羟基磷灰石涂层、硅酸盐陶瓷涂层、纳米ZrO2涂层、纳米TiO2涂层,以及采用等离子体浸没离子注入/沉积技术对钛合金表面进行离子注入和薄膜沉积的研究结果.最后,基于钛硬组织植入体表面需求,指出钛硬组织植入体表面改性设计与制备应注重改性层的综合生物学性能及力学安全性.  相似文献   

15.
随着燃煤电站运行温度提高,会对电站耐热部件金属材料T91产生严重的高温热腐蚀,降低其设计使用寿命,因此,亟待开发耐热钢T91耐热腐蚀涂层。采用电弧离子镀技术在耐热钢T91表面制备一层Al5%Si镀层,然后在550℃真空热处理40 h形成Al Si扩散涂层;研究了该Al Si扩散涂层在650℃和750℃空气中典型燃煤环境中75%Na2SO4+25%NaCl盐膜下的热腐蚀行为。结果表明:耐热钢T91发生了快速热腐蚀,表面腐蚀产物主要是Fe和Cr的混合氧化物,易于剥落而不具有高温防护性能;而当T91表面施加Al5Si扩散涂层后,热腐蚀速度明显降低,表面腐蚀产物主要富含Al2O3,其抗热腐蚀性能较优,具有较好的高温防护性能。  相似文献   

16.
导电聚合物在金属腐蚀领域存在着潜在的应用前景。为获得防腐性能良好的聚邻氯苯胺(POCl)-nano SiC/环氧树脂复合材料,利用原位聚合法制备了盐酸掺杂态POCl-nano SiC复合改性材料。通过FTIR、UV-vis、XRD、TGA、XPS和SEM等分析手段对其结构、组成和形貌进行了表征。以POCl-nano SiC复合改性材料为填料,环氧树脂为成膜物质,在碳钢表面制备了POCl-nano SiC含量为3wt%、5wt%和8wt%的POCl-nano SiC/环氧树脂复合涂层,并通过SEM对涂层的断面形貌进行了观察。利用Tafel极化曲线和电化学交流阻抗谱研究了涂层在3.5%NaCl溶液中的防腐性能。结果表明,POCl-nano SiC填充量为5wt%的POCl-nano SiC/环氧树脂复合涂层表现出较好的抗腐蚀性能,其腐蚀速率为2.78×10-3 mm/y,腐蚀保护效率高达90.45%。表明适量的POClnano SiC作为环氧树脂涂层的增强相,降低了涂层的孔隙缺陷,在腐蚀介质刺激下,能够在碳钢表面形成钝化保护层。Nano SiC粒子在涂层中充当着类似栅栏结构的屏障,从空间结构上阻止了气体分子和腐蚀溶液向金属基底的渗透。  相似文献   

17.
研究了金属铀在室温大气环境经15年贮存后,力学性能及表面腐蚀状况的变化。结果表明,与未经存贮的试样相比,存贮后金属铀的屈服强度提高了13.0%、抗拉强度、冲击韧性、断后伸长率和断面收缩率分别降低了0.8,10.4,14.0和33.3%。在大气环境中表面腐蚀形貌主要呈斑状,环境中的水汽是导致金属铀在贮存中发生腐蚀的主要因素,硅杂质在水汽存在条件会促进铀表面点蚀的形成。  相似文献   

18.
热喷涂亚稳态复合涂层研究进展   总被引:4,自引:0,他引:4  
热喷涂亚稳态复合涂层能克服许多亚稳材料不易直接成形的不足,有效发挥非晶、纳米晶和准晶材料的特殊功效.等离子喷涂和高速火焰喷涂亚稳态铁基、镍基、陶瓷粉末制备的涂层质量优异,在热障、耐磨、防腐等领域应用前景广阔,但尚需拓展涂层功能,降低成本.电弧喷涂粉芯丝材制备亚稳态涂层具有成本低、效率高、成分易调节等优势,在大规模高效制备耐磨、防腐、防高温腐蚀与冲蚀涂层方面优势明显,但尚需提高涂层稳定性,开发更多涂层材料体系.目前,我国需要从自动化热喷涂设备开发和新型亚稳态材料体系研究两方面展开深入研究,提高亚稳态喷涂层的组织结构稳定性和性能质量可靠性,使该技术走出实验室面向工业应用,更好地为国家循环经济建设服务.  相似文献   

19.
采用电弧离子镀技术和后续扩散处理,制备了AlSiY扩散涂层。同时研究了AlSiY扩散涂层在1000℃下的高温氧化行为和900℃下Na2SO4+NaCl混合盐中的热腐蚀行为。实验结果表明:AlSiY扩散涂层主要由β-NiAl相以及一些弥散分布的α-W、CoWSi相组成。氧化和腐蚀过程中涂层中β-NiAl相提供Al源在表面形成了连续致密的Al2O3膜,使涂层具有很好的抗高温氧化和抗热腐蚀能力。  相似文献   

20.
聚苯胺涂料具备优异的防腐性能,在金属防腐领域应用前景广阔。本文从聚苯胺的结构和性能出发,综述了聚苯胺型防腐涂层制备方法的发展,指出复合法是聚苯胺防腐涂层制备技术未来发展的主要趋势,最后对聚苯胺型防腐涂层制备技术的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号