首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individually powered superconducting quadrupoles with a coil bore of 70 mm will be installed in the LHC insertions, in areas where increased geometrical acceptance and improved field quality are required. The quadrupoles feature a four-layer coil, designed on the basis of two graded 8.3 mm wide Rutherford-type NbTi cables. The magnets have a magnetic length of 3.4 m and a nominal gradient of 160 T/m at 4.5 K and 3610 A. A total of 26 quadrupoles are in production at ACCEL Instruments (Germany). In this report, we present the experience in fabrication of the pre-series magnets and the results of the initial qualification tests.  相似文献   

2.
The LHC insertions are equipped with several different types of individually powered superconducting quadrupoles. These units comprise several quadrupole magnets and orbit correctors, and range in length from 5.3 m to 11.3 m. In spite of the variety of types and interface requirements, the design of the quadrupoles is based on the same principle where two welded half-shells provide the rigidity and alignment of the magnets and serve as a helium pressure vessel. In this paper we present the mechanical design of the LHC insertion quadrupoles, describe the initial experience in the assembly of the pre-series units, and report on the alignment measurements.  相似文献   

3.
CERN's Large Hadron Collider (LHC) requires 48 twin aperture resistive quadrupoles in the beam cleaning insertions. Canada is contributing these magnets to CERN in the framework of the TRIUMF-LHC collaboration contracts. A pre-series magnet was produced by Canadian industry and delivered in March 2001. This magnet incorporates important design changes that resulted from experience with a prototype magnet. The construction of this pre-series magnet and the measurements made at ALSTOM and at CERN are reported. A comparison is made between high precision pole distance measurements and the magnetic measurements performed with a rotating coil mole. Conclusions for series production and possibilities for multipole corrections are outlined.  相似文献   

4.
This paper presents the results of a comprehensive analysis, from the geometric point of view, of the pre-series LHC dipoles. The progressive change of the imposed magnet shape has been monitored from the first assembly stage until after the cold test. Data concerning the error on sagitta, extremity positions and sextupolar corrector positions are provided for the pre-series magnets. Implications of aligning out-of-tolerance dipoles by the extremities are also discussed.  相似文献   

5.
The LHC comprises eight insertions, four of which are dedicated to the experiments while the others are used for major collider systems. The various functions of the insertions are fulfilled by a variety of magnet systems, most of them based on the technology of NbTi superconductors cooled by superfluid helium at 1.9 K. In this paper, we review the concepts underlying the design of the LHC insertions, and describe the corresponding design of the various specialized magnet systems. A status of the procurement of the magnets is given, and plans for their installation and commissioning reviewed.  相似文献   

6.
For reasons of geometrical acceptance, 70 mm bore twin aperture quadrupoles are required in the LHC insertions. For an operating gradient of 160 T/m at 4.5 K, a design based on a four layer coil wound from two graded 8.2 mm NbTi conductors has been developed. Three 1 m single aperture quadrupoles of this design have been built and successfully tested. Thereafter, the magnets have been disassembled and the coils re-collared using self-supporting collars. In this paper, we describe the design features of the twin aperture quadrupole, and report on the initial collaring tests and procedures for collaring and final assembly of the 1 m magnet  相似文献   

7.
High gradient quadrupoles are being developed by the US-LHC Accelerator Project for the LHC interaction region inner triplets. Protection strip heaters are the primary means of protecting these magnets against excessively high coil temperatures and coil voltage to ground as a result of a spontaneous quench. The main objective of the quench protection R&D program is to optimize the heater performance within the constraints of the LHC heater power supply and quench detection system. The results of these studies on several two meter long model magnets are presented  相似文献   

8.
The Large Hadron Collider (LHC) will be equipped with a large number (6400) of superconducting corrector magnets. These magnets are powerful, with typical peak fields of 3-4 T on the coils, but at the same time compact and of low cost. There are many types: sextupoles, octupoles and decapoles to correct the main dipole field, dipoles, quadrupoles, sextupoles and octupoles to condition the proton beams and several nested correctors from dipole to dodecapole in the inner triplets. The sizes vary from 6 kg, 110 mm long, nested decapole-octupole spool pieces to 1800 kg, 1.4 m long, trim quadrupoles. The fabrication of the 11 different types of magnets is assured by 10 contracts placed at 6 firms, two of which are in India. A number of magnets are now in series production, others in their pre-series production. The paper describes the present state of the fabrication and the testing of these magnets.  相似文献   

9.
The preseries production of the LHC main superconducting dipoles is presently being tested at CERN. The foremost features of these magnets are: twin structure, six block two layer coils wound from 15.1 mm wide graded NbTi cables, 56 mm aperture, polyimide insulation and stainless steel collars. The paper reviews the main test results of magnets tested to day in both normal and superfluid helium. The results of training performance, magnet protection, electrical integrity and the field quality are presented in terms of the specifications and expected performance of these magnets in the future accelerator.  相似文献   

10.
The main quadrupoles of the Large Hadron Collider (LHC) are connected in families of focusing and defocusing magnets. In order to make tuning corrections in the machine a number of quadrupole corrector magnets (designated MQT) are necessary. These 56 mm diameter aperture magnets have to be compact, with a maximum length of 395 mm and a coil radial thickness of 5 to 7.5 mm, while generating a minimum field gradient of 110 T/m. Two design options have been explored, both using the "counter-winding" system developed at CERN for the fabrication of low cost corrector coils. The first design, with the poles composed of two double-pancake coils, each counter-wound using a single wire, superposed to create 4-layer coils, was developed and built by ACCEL Instruments GmbH. A second design where single coils were counter-wound using a 3-wire ribbon to obtain 6-layer coils was developed at CERN. This paper describes the two designs and reports on the performance of the prototypes during testing.  相似文献   

11.
The Large Hadron Collider (LHC) needs more than 6000 superconducting corrector magnets. These must be sufficiently powerful, have enough margin, be compact and of low cost. The development of the 11 types of magnets was spread over several years and included the magnetic and mechanical design as well as prototype building and testing. It gradually led to the systematic application of a number of interesting construction principles that allow to realize the above mentioned goals. The paper describes the techniques developed and presently used in practically all the LHC corrector magnets ranging from dipoles to dodecapoles.  相似文献   

12.
Premature training quenches are usually caused by the transient energy release within the magnet coil as it is energized. The dominant disturbances originate in cable motion and produce observable rapid variation in voltage signals called spikes. The experimental set up and the raw data treatment to detect these phenomena are briefly recalled. The statistical properties of different features of spikes are presented like for instance the maximal amplitude, the energy, the duration and the time correlation between events. The parameterization of the mechanical activity of magnets is addressed. The mechanical activity of full-scale prototype and first preseries LHC dipole magnets is analyzed and correlations with magnet manufacturing procedures and quench performance are established. The predictability of the quench occurrence is discussed and examples presented.  相似文献   

13.
A full-scale and fully-instrumented working model of the LHC lattice cell has been tested at CERN between March and December 2002. Aside of the current, pressure and temperature sensors controlled by an industrial supervision system, a novel device has been set to monitor magnet positions with respect to the surrounding cryostat. The series of operating modes to test cryogenics, current leads and quench recovery electronics offered the chance to investigate potentially harmful deformations of the superconducting structure. In this paper, we present a survey of displacements and deformations experienced by the LHC cell magnets during thermal cycles, current ramps and resistive transitions. Although the system complexity prevented from complete modeling, a preliminary phenomena explanation is given.  相似文献   

14.
Fermilab has constructed a number of 2 m model quadrupoles as part of an ongoing program to develop and optimize the design of quadrupoles for the LHC Interaction Region inner triplets. The quadrupole design is based upon a two layer shell type coil of multi-filament NbTi strands in Rutherford cable, insulated with Kapton film. As such, the coil size and mechanical properties are critical in achieving the desired prestress and field quality targets for the agent. Throughout the model magnet program, different design and manufacturing techniques have been studied to obtain coils with the required mechanical properties. This paper summarizes the structural material and coil mechanical properties, coil design optimization results and production experience accumulated in the model R&D program  相似文献   

15.
The main lattice of the Large Hadron Collider (LHC) employs about 1600 main magnets and more than 4000 corrector magnets. All superconducting and working in pressurized superfluid helium bath, these impressive line of magnets fills more than 20 km of the underground tunnel. With almost 70 main dipoles already delivered and 10 main quadrupoles almost completed, we passed the 5% of the production and now all manufacturers have fully entered into series production. In this paper the most critical issues encountered in the ramping up in such a real large scale fabrication is addressed; uniformity of the coil size and of prestress, special welding technique, tolerances on curvature (dipoles) or straightness (quadrupoles) and of the cold mass extremities, harmonic content and, most important, the integrated field uniformity among magnets. The actual limits and the solution for improvements are discussed. Finally a realistic schedule based on actual achievements is presented.  相似文献   

16.
High-gradient superconducting quadrupole magnets are being developed by the US LHC Accelerator Project for the Interaction Regions of the Large Hadron Collider. Determination of the magnetic axis for alignment of these magnets will be performed using a single stretched wire system. These measurements will be done both at room and cryogenic temperatures with very long wire lengths, up to 20 m. This paper reports on the stretched wire alignment methodology to be employed: and the results of recent room-temperature measurements on a 2 m model magnet with long wire lengths  相似文献   

17.
The eight inner triplets of the LHC will each house a combined corrector magnet assembly, MQSXA, which comprises a skew quadrupole (MQSX) in line with nested skew octupole (MCOSX), octupole (MCOX), and skew sextupole (MCSSX) windings. These superconducting single-aperture magnet assemblies have a bore of 70 mm diameter, and the complete MQSXA assemblies are 530 mm long, have an outer diameter of 180 mm and an approximate mass of 90 kg. In the inner triplets the MQSXA assemblies are flanged to the end plate of the high gradient quadrupoles (MQX). This paper presents the main design features of the MQSXA and the experience gained with the prototype of the nested part of this magnet assembly, which has been built at CERN. The results of the training tests at 4.3 K and 1.9 K together with the cold magnetic measurements are given.  相似文献   

18.
With the aim of selecting the most suitable design for the series production of the LHC main dipoles, several possible configurations were analysed with respect to admissible component tolerances and structural stability, field level, field quality, number and weight of parts. Two alternatives designs, featuring common collars made out of aluminium alloy and austenitic steel, respectively, were finally compared in detail, Although both designs are almost equivalent at nominal conditions, the austenitic steel collar structure turned out to be far less sensitive to components dimensional variations. This paper reports the main results of the above evaluations, which lead to the choice of austenitic steel collars for the LHC main dipoles  相似文献   

19.
The field strength and homogeneity of all the LHC superconducting magnets were measured as a part of the production control and qualification process that has taken place during the past four years. In addition to field measurements at room temperature performed on the integral of the production, a significant part of the magnets has been subjected to extensive magnetic measurements at cold. The measurements at cryogenic temperatures, generally performed up to excitation currents of 12 kA corresponding to the ultimate LHC energy of 7.6 TeV, were mainly based on static and dynamic field integral and harmonic measurements. This allowed us to study in detail the DC effects from persistent current magnetization and long-term decay during constant current excitation. These effects are all expected to be of relevance for the field setting and error compensation in the LHC. This paper reports the main results obtained during these tests executed at operating conditions. The integrated field quality is discussed in terms of distribution (average and spread) of the field strength and low-order harmonics as obtained for all the main ring magnet families (dipoles, main and matching quadrupoles). The dependence of field quality on coil geometry, magnet and cable manufacturer is analyzed. A projection of the field quality expected for the critical components in the machine is presented.  相似文献   

20.
The model program for the LHC main dipoles is dedicated to the study and validation of design variants and assembly parameters to achieve reproducible performance and optimise components and assembly costs. The topics investigated in the last year include the material of the coil end spacers, the use of polyimide films from different manufacturers, the definition of optimum azimuthal and longitudinal coil pre-stress values, shimming of coil ends, collaring around the “cold bore” and different layouts of the yoke ends. This paper presents the main characteristics of such recent models, the results obtained during cold tests and the plans for the final phase of the model program for the LHC dipoles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号