首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 研究了淬火+回火(QT)和淬火+两相区淬火+回火(QLT)2种热处理工艺对9NiCrMo钢力学性能的影响,分别采用OM和SEM观察了微观组织结构,利用X射线衍射和透射电镜研究了不同热处理后逆转变奥氏体的含量及其分布,进而分析了该工艺对9NiCrMo钢力学性能的影响规律及其机理。结果表明:两相区热处理能够在保证强度级别的同时,有效改善9NiCrMo钢的低温韧性,生成的双相组织及改变了逆转变奥氏体的分布状态是其提高钢低温韧性的主要原因。  相似文献   

2.
研究了5NiCrMo低温钢的调质热处理工艺,分析了回火温度对该钢组织和力学性能的影响。结果表明:试验钢经调质热处理后,形成了回火马氏体和逆转变奥氏体的混合组织。560~640℃回火时,随温度提高,屈服强度呈降低趋势,-100℃冲击功先升高、在620℃回火时达到峰值后降低。深冷后保留的逆转变奥氏体显著影响试验钢的低温韧性。拉伸和冲击性能均满足要求的回火温度是580~620℃。  相似文献   

3.
采用直接淬火+回火和离线淬火+回火两种调质工艺试制了SPV490Q大型石油储罐用高强钢。研究了淬火工艺对其力学性能和显微组织的影响,分析了经640℃回火后,钢的组织与性能的特征。结果表明,采用直接淬火加回火工艺,钢板具有更好的强韧匹配及耐回火性能。  相似文献   

4.
肖桂枝  邸洪双 《钢铁》2008,43(1):68-72
对30MnSi PC钢棒进行了淬火回火处理,分析探讨了热处理工艺对高强度钢耐延迟断裂性能的影响.采用FIP试验作为PC钢棒耐延迟断裂性能的评价方法.研究发现,相同的回火工艺下30MnSi钢的耐延迟断裂性能随淬火温度的升高呈先升高后降低的趋势,950 ℃左右淬火其耐延迟断裂性能较好;在保证强度满足要求的前提下提高回火温度可以提高钢的耐延迟断裂性能.组织观察发现,经430 ℃左右回火后,30MnSi钢棒得到的回火索(屈)氏体组织均匀细小,碳化物弥散分布在马氏体板条界上,耐延迟断裂性能较好.可见,通过改变热处理制度改变组织形态,是改善30MnSi钢的耐延迟断裂性能的一种有效途径.  相似文献   

5.
研究了淬火后不同温度回火对Si-Mn-Mo系贝氏体钢显微组织与力学性能的影响.结果表明,采用淬火后回火的工艺可以显著提高Si-Mn-Mo系贝氏体钢的强度和塑性.淬火后300℃回火与350℃回火,该钢的力学性能相差不大,而450℃回火后强度、硬度相对较低,韧塑性略有提高.组织观察表明,该钢为贝氏体铁素体和残余奥氏体(片状和块状M-A岛)的复合组织,适当温度回火可以促进块状M-A岛分解,增加板条铁素体含量,提高残余奥氏体的机械稳定性,进而稳定其组织性能..  相似文献   

6.
设计了一种低碳Mn-Mo-Nb-Cu-B系超高强度工程机械结构用钢,研究了在同种成分条件下TMCP(thermo-mechan-ical control-process)+回火与控轧+直接淬火+回火两种工艺对钢组织和性能的影响.对比分析了热处理前后钢板各项力学性能和组织的变化.结果表明,两种工艺条件下钢的屈服强度和冲击性能的变化趋势相似,经500~620℃回火1h后钢的屈服强度均有大幅度提高.控轧+直接淬火+回火得到的钢板综合性能明显优于TMCP+回火,前者在600℃回火后屈服强度仍达到1000MPa以上,同时延伸率达到18%,-40℃冲击功大于30J,而后者塑性较好但强度稍低;随回火温度的升高,控轧+直接淬火+回火工艺条件下的组织演化速度要快于TMCP+回火工艺.  相似文献   

7.
就工程机械用履带钢23MnB的热处理工艺进行了研究.讨论了淬火温度对23MnB钢性能及组织的影响,以及回火温度对钢机械性能的影响,确定出了23MnB钢合适的热处理工艺制度.  相似文献   

8.
为研究回火温度和保温时间对冶金锯片用65Mn钢力学性能的影响,设计了6种回火温度和4种保温时间,分别测定其力学性能和显微组织.结果显示:65Mn钢在淬火条件相同时,回火温度对性能的影响显著,回火保温时间对65Mn钢力学性能的影响不明显.在保证工件力学指标的前提下可以适当提高回火温度,显著缩短回火保温时间.  相似文献   

9.
为了分析淬火和回火热处理工艺对NM450耐磨钢组织性能的影响,通过对实验钢热轧态、淬火态和回火态不同状态下材料的组织进行对比分析,得到了淬火、回火工艺对材料组织的影响规律。结果表明:通过控制轧制,经930℃淬火+保温20 min、200℃回火+保温25 min热处理后实验钢可获得优良的综合力学性能。  相似文献   

10.
张越  曾云  郑锦峰  陈君  伍伟 《特殊钢》2020,41(5):68-70
通过不同的热处理制度:800、820℃低温淬火+600℃回火,880℃+860℃两次淬火+600℃回火和860℃一次淬火+600℃回火,对40CrMnMo钢进行热处理试验,并研究了三种热处理工艺对40CrMnMo试验钢组织和性能的影响。结果表明,三种热处理工艺的试验钢抗拉强度相近(936~951 MPa),组织为回火马氏体+铁素体,采用800、820℃低温淬火+600℃回火热处理工艺,试验钢的冲击功最高(65~69J)。  相似文献   

11.
王通  张朋  王九清  庞辉勇  龙杰  赵喜伟 《钢铁》2020,55(12):72-80
 为了稳定亚温淬火工艺与工业化生产,通过力学性能分析及显微组织观察,对比了正火+亚温淬火+回火、在线淬火+亚温淬火+回火、离线淬火+亚温淬火+回火3种热处理工艺对690 MPa级海洋工程用钢板组织性能的影响。结果表明,采用离线淬火+亚温淬火+回火工艺结果最理想,能够大幅度提高钢板的低温冲击性能和伸长率。同时,还能够获得较低的屈强比,断口形貌全部为韧窝,呈明显的韧性断裂,而且随着亚温保温时间的增加,强度逐渐提高,当保温时间达到30 min以后,强度及条片状铁素体基本不发生变化;采用直接淬火态+亚温淬火+回火虽然可以保证高强度低屈强比,但是冲击功表现较为离散,稳定性欠佳,断口形貌为混合型,以韧性断裂为主;采用正火态+亚温淬火+回火工艺效果最差,尤其是不能保证钢板低温韧性,断口形貌全部为解理,呈明显的脆性断裂,其中片条状铁素体形貌是决定优良低温冲击性能的关键因素。  相似文献   

12.
针对1种800MPa级高强钢的调质过程,分析了不同淬火温度和回火温度对实验钢力学性能和组织的影响。结果表明:淬火温度在880~920℃之间时,随着淬火温度升高,实验钢的强度逐渐降低,-40℃冲击韧性是先升高后降低,并在900℃达到最大;回火温度在550~700℃之间,随着回火温度的升高,实验钢的强度逐渐下降,-40℃冲...  相似文献   

13.
阳开生 《中国冶金》2017,27(10):34-39
为了获得一种良好强韧性匹配的390MPa级船板钢,通过NbV-N复合微合金化及不同热处理工艺(正火+回火、淬火+回火),对实验室钢板的室温拉伸、-40℃冲击性能及钢的微观组织、析出相等进行了分析研究。结果表明,钒、铌的添加能细化晶粒,且氮质量分数的增加使得这种细晶效果更为显著,从而使得钢的强韧性,特别是冲击韧性明显提升。相比轧态,正火+回火、淬火+回火热处理后钢的力学性能均有明显提高,特别是低温韧性有明显改善,这得益于回火过程中大量微合金碳氮化物的弥散析出及钢的有效晶粒尺寸的显著细化。  相似文献   

14.
The change rule of mechanical properties and impact fracture morphologies of a high Co- Ni secondary hardening ultra- high strength 25Co15Ni11Cr2MoE steel tempered at 200-750?? after quenched was studied by mechanical properties test and microstructure analysis such as optical microscope(OM) and scanning electron microscope(SEM). The results show that experimental steel after quenching and tempering has a remarkable secondary hardening effect. After tempered at 400-495??, the hardness of experimental steel can reach and beyond the quenched hardness. In this range, tensile strength, yield strength and hardness of experimental steel increase with the tempering temperature increasing, tensile strength and hardness of experimental reach maximum (57. 3HRC and 2160MPa) after tempered at 470??, meanwhile, with the tempering temperature increasing, impact toughness of experimental steel decreases during the prophase, until reaches minimum at 430??, then increases gradually, and reaches maximum after tempered at 510??. The recommended optimum heat treatment process of 25Co15Ni11Cr2MoE steel is as follow: 950???1h oil quenching??(-73??)??1h rising back to room temperature in the air ??495???5h air cooling. At this time, the experimental steel has the best strength and toughness matching.  相似文献   

15.
调整热处理工艺保证25MnV钢石油套管质量   总被引:1,自引:0,他引:1  
针对25MnV钢石油套管调质处理后冲击韧性偏低且不稳定的问题,进行了改进的亚温淬火工艺试验,生产应用结果表明,与常规热处理相比,亚温淬火后的25MnV钢可得到板条马氏体之间分布有条状铁素体的复相组织,在不降低强度的前提下,明显提高冲击韧性,抑制高温回火脆性。  相似文献   

16.
通过金相显微镜、扫描电镜、力学性能测试,研究了830~930℃淬火+650 ℃回火对690 MPa高强钢显微组织和力学性能的影响.结果表明:实验钢经两相区830 ℃淬火+650 ℃回火后的组织为板条状铁素体和回火索氏体,其屈服强度较低为679 MPa.淬火温度在完全奥氏体化相区为890~930℃时,随着淬火温度升高,材...  相似文献   

17.
  Mechanical properties of quenching, intercritical quenching and tempering (QLT) treated steel containing Ni of 9% were evaluated from specimens subject to various tempering temperatures. The detailed microstructures of steel containing Ni of 9% at different tempering temperatures were observed by optical microscope (OM) and transmission electron microscope (TEM). The volume fraction of austenite was estimated by XRD. The results show that high strength and cryogenic toughness of steel containing Ni of 9% are obtained when the tempering temperature are between 540 and 580 ℃. The microstructure keeps the dual phase lamellar structure after the intercritical quenching and there is cementite created in the Ni rich constituents when tempering temperature is 540 ℃. When tempering temperatures are between 560 and 580 ℃, the reversed austenites (γ′) grow up and the dual phase lamellar structure is not clear. The γ′ becomes instable at 600 ℃. When tempered at temperature ranging from 500 to 520 ℃, the increase of dislocation density in the lamellar matrix makes both tensile strength and yield strength decrease. When tempered at 540 ℃ and higher temperature, the yield strength decreases continuously because the C and alloying elements in the matrix are absorbed by the cementite and the γ′, so the yield ratio is decreased by the γ′. There are two toughness mechanisms at different tempering temperatures. One is that the precipitation of cementite absorbs the carbon in the steel which plays a major role in improving cryogenic toughness at lower temperature. Another is that the γ′ and the purified matrix become major role at higher tempering temperature. When the tempering temperature is 600 ℃, the stability of γ′ is decreased quickly, even the transformation takes place at room temperature, which results in a sharp decrease of Charpy V impact energy at 77 K. The tempering temperature range is enlarged by the special distribution of cementite and the lamellar structure.  相似文献   

18.
The influence of thermomechanical treatment (TMT), i.e., controlled rolling and direct quenching, as a function of rolling temperature and deformation on the microstructure and mechanical properties of HSLA-100 steel have been studied. The optical microstructure of the direct quenched (DQ) and tempered steel rooled at lower temperatures (800 °C and 900 °C) showed elongated and deformed grains, whereas complete equiaxed grains were visible after rolling at 1000 °C. The transmission electron microscope (TEM) microstructure of the 800 °C rooled DQ steel showed shorter, irregular, and closer martensite laths with extremely fine Cu and Nb(C,N) precipitates after tempering at 450 °C. The precipitates coarsened somewhat after tempering at 650 °C; the degree of coarsening was, however, less compared to that of the reheat-quenched (RQ) and tempered steel, indicating that the DQ steel was slightly more resistant to tempering. Similar to the RQ steel, at a 450 °C tempering condition, the DQ steel exhibited peak strength with extremely poor impact toughness. After tempering at 650 °C, the toughness of the DQ steel improved significantly, but at the expense of its strength. In general, the strength of the DQ and tempered steel was good and comparable to that of the RQ and tempered steel, although, its impact toughness was marginally less than the latter. The optimum combination of strength and toughness in the DQ steels was achieved after 900 °C rolling with 50 pct deformation, followed by direct quenching and tempering at 650 °C (yield strength (YS)=903 MPa, ultimate tensile strength (UTS)=928 MPa, and Charpy V-notch (CVN) strength=143 J at −85 °C).  相似文献   

19.
摘 要: 通过金属摆锤冲击和显微硬度试验,采用OM、SEM、TEM等表征手段,研究了不同调质工艺对700L汽车大梁钢组织和力学性能的影响。结果表明,随着淬火温度的提高,粒状贝氏体(GB)组织有所减少,板条状贝氏体铁素体(BF)数量逐渐变多,板条宽度增加,铁素体基体及边界上的白色析出物数量增多;随着回火温度的提高,块状铁素体有所长大,马奥岛组织和残余奥氏体分解现象明显,且出现了数量较少的等轴状铁素体,回火析出物数量增多,回火温度超过600 ℃后粒子出现粗化长大现象。低温冲击功在不同淬火与回火条件下均表现为上下波动的状态,这主要与第二相粒子及基体组织规律性的变化有关;试验钢在经600 ℃回火后具有最佳低温冲击韧性,其主要原因是钢基体中存在数量较多的具有高密度位错的贝氏体铁素体(BF)与尺寸合适、分布均匀的第二相纳米粒子。  相似文献   

20.
为了开发同时具有超高强度和良好韧性的低合金超高强度钢板,采用30MnCrNiMo连铸坯和33MnCrNi3Mo钢锭,经过真空复合焊接,高温轧制,淬火+低温回火热处理工艺研制出15 mm CrNiMo-CrNi3MoCrNiMo三层复合超高强度钢板;利用探伤、拉伸、冷弯、冲击、硬度等试验检验其结合度和力学性能;利用光学显微镜、扫描电镜等分析三层复合超高强度钢的组织和冲击断口形貌。结果表明,采用该工艺生产的三层复合超高强度钢板结合性良好,能够满足GB/T 7734-2015 Ⅰ级探伤要求;复合钢板的综合力学性能良好,结合面处硬度值存在明显的过渡区域;结合面组织和基体组织均为回火马氏体组织  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号