首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the presence of several human disease genes on chromosome 11q13, few of them have been molecularly cloned. Here, we report the construction of a contig map encompassing 11q13.1-q13.3 using bacteriophage P1 (P1), bacterial artificial chromosome (BAC), and P1-derived artificial chromosome (PAC). The contig map comprises 32 P1 clones, 27 BAC clones, 6 PAC clones, and 1 YAC clone and spans a 3-Mb region from D11S480 to D11S913. The map encompasses all the candidate loci of Bardet-Biedle syndrome type I (BBS1) and spinocerebellar ataxia type 5 (SCA5), one-third of the distal region for hereditary paraganglioma 2 (PGL2), and one-third of the central region for insulin-dependent diabetes mellitus 4 (IDDM4). In the process of map construction, 61 new sequence-tagged site (STS) markers were developed from the Not I linking clones and the termini of clone inserts. We have also mapped 30 ESTs on this map. This contig map will facilitate the isolation of polymorphic markers for a more refined analysis of the disease gene region and identification of candidate genes by direct cDNA selection, as well as prediction of gene function from sequence information of these bacterial clones.  相似文献   

2.
We have combined genetic, radiation-reduced somatic cell hybrid (RRH), fluorescent in situ hybridization (FISH), and physical mapping methods to generate a contig of overlapping YAC, PAC, and cosmid clones corresponding to > 3 continuous Mb in 11q13. A total of 15 STSs [7 genes (GSTP1, ACTN, PC, MLK3, FRA1, SEA, HNP36), 4 polymorphic loci (D11S807, D11S987, GSTP1, D11S913), 3 ESTs (D11S1956E, D11S951E, and W1-12191), and 1 anonymous STS (D11S703)], mapping to three independent RRH segregation groups, identified 26 YAC, 7 PAC, and 16 cosmid clones from the CGM, Roswell Park, CEPH Mark I, and CEPH MegaYAC YAC libraries, a 5 genome equivalent PAC library, and a chromosome II-specific cosmid library. Thirty-six Alu-PCR products derived from 10 anonymous bacteriophage lambda clones, a cosmid containing the polymorphic marker D11S460, or STS-positive YAC or cosmid clones were identified and used to screen selected libraries by hybridization, resulting in the identification of 19 additional clones. The integrity and relative position of a subset of clones was confirmed by FISH and were found to be consistent with the physical and RRH mapping results. The combination of STS and Alu-PCR-based approaches has proven to be successful in attaining contiguous cloned coverage in this very GC-rich region, thereby establishing for the first time the absolute order and distance between the markers: CEN-MLK3-(D11S1956E/D11S951E/W1-12191)-FRA1-D 11S460-SEA-HNP36/ D11S913-ACTN-PC-D11S703-GSTP1-D11S987-TEL.  相似文献   

3.
Previously, we have found that the loss of heterozygosity (LOH) was frequently observed on chromosome 6q in acute/lymphoma-type adult T-cell leukemia (ATL), suggesting a putative tumor-suppressor gene for ATL may be present on chromosome 6q. To further define a region containing this gene, we performed fine-scale deletional mapping of chromosome 6q in 22 acute/lymphomatous ATL samples using 24 highly informative microsatellite markers. LOH was found in 9 samples (40. 9%) at 1 or more of the loci examined. Of the 9 samples, 8 shared the same smallest commonly deleted region flanked by D6S1652 and D6S1644 (6q15-21). The genetic distance between these two loci is approximately 4 cM. These results suggest that a putative tumor-suppressor gene on chromosome 6q15-21 probably plays a very important role in the evolution of acute/lymphomatous ATL. Our map provides key information toward cloning the gene.  相似文献   

4.
5.
The high resolution mapping of the ataxia telangiectasia (A-T) locus on chromosome 11q22-23 requires the generation of new polymorphic markers specifically within the segment of 11q22-23 to which the locus has been assigned. We have made use of a library of Alu-PCR clones, amplified from a radiation reduced somatic cell hybrid containing the relevant chromosome 11 segment, to generate sequence tagged sites (STS) within the 11q22-23 region and have used YAC clones to extend the loci identified by these STSs. The identification of paired polymorphisms (from Alu-PCR and the associated YAC derived clone), which are physically linked, but which show minimal linkage disequilibrium, provides a highly informative haplotype for use in genetic linkage analysis in A-T families. We describe the characterisation of 2 such polymorphic loci, D11S535 and D11S611, which map between existing flanking markers, and which provide additional information on the location of the major A-T locus.  相似文献   

6.
An expression map containing 48 ESTs was constructed to identify a tumor-suppressor gene involved in B-cell chronic lymphocytic leukemia (B-CLL), which was previously assigned to chromosome band 13q14.3 close to genetic markers D13S25 and D13S319. Thirty-nine of these 48 ESTs, together with 11 additional ones listed in databases, were initially assigned to chromosome 13q14 between markers D13S168 and D13S176. Nine others have recently been located in the D13S319 region. Our results indicate that 48 of the 59 ESTs analyzed belong to a YAC contig of chromosome 13 band q14, and 22 are contained on YAC 933e9, which encompasses the B-CLL critical region. Ten of these 22 ESTs were accurately assigned on a PAC, BAC, and cosmid contig encompassing the smallest minimal deletion area described so far in B-CLL, and 20 were tested for their expression on 27 normal or tumor tissues. One EST appears to be a likely candidate for the tumor-suppressor gene involved in B-CLL.  相似文献   

7.
Cytogenetic analysis of childhood acute lymphoblastic leukemia (ALL) identified nonrandom chromosomal abnormalities of the long arm of chromosome 6. Most of the alterations are deletions that are thought to be indicative of the presence of a tumor suppressor gene that is mutated on the remaining allele. These observations led us to consider whether 6q loss may contribute to the pathogenesis of childhood ALL. To define further a region containing this gene, we analyzed the loss of heterozygosity (LOH) of chromosome 6 in 113 primary ALL samples with matched normal DNA using 34 highly informative microsatellite markers. LOH was found in 17 (15%) samples at one or more of the loci, and partial or interstitial deletions of 6q were detected in 11 of these tumors. On the basis of these results, we performed a detailed deletional map and identified two distinct regions of deletion. The first region is flanked by D6S283 and D6S302 loci at 6q21-22. The second region is flanked by D6S275 and D6S283 loci at 6q21. Clinical analysis determined that LOH of 6q was demonstrated both in precursor-B cell ALLs (15 of 93; 16%) and in T cell ALLs (2 of 19; 11%). In addition, 19 patients have been studied at diagnosis and relapse; 18 showed the same 6q21-22 structural abnormality at relapse (normal, 16 patients; LOH, 2 patients) as their initial presentation, suggesting, albeit with a small patient sample size, that 6q21-22 deletions may be an initial event in leukemogenesis and may occur less frequently during the progression of childhood ALL. These data suggest the presence of putative tumor suppressor genes on chromosome arm 6q that are important in the development of both T and precursor-B childhood ALLs. Our map provides important information toward cloning putative ALL tumor suppressor genes.  相似文献   

8.
Allelic deletions of chromosome 6q that occur frequently in ovarian cancers imply the presence of a putative tumor suppressor gene in this chromosomal vicinity. We analyzed DNA from 32 patients with ovarian carcinomas for loss of heterozygosity at loci on the distal portion of chromosome 6q and constructed a detailed deletion map. The map indicated a commonly deleted region between loci D6S149 (defined by CI6-24) and A2, which are estimated to be 300 kb apart on the basis of our cosmid contig map. By means of exon trapping, we found that the human AF-6 gene, which is disrupted in acute myeloid leukemia cells that carry a (6;11)(q27;q23) translocation, is located within the commonly deleted region. Subsequent screening of the AF-6 gene in ovarian carcinomas revealed no mutations. However, our mapping results, which narrowed the region containing the putative tumor suppressor gene to a 300-kb segment of 6q27, will facilitate further efforts to identify a gene associated with ovarian cancer.  相似文献   

9.
Autosomal dominant familial spastic paraplegia (AD-FSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Three loci on chromosome 14q (SPG3), 2p (SPG4), and 15q (SPG6) were shown to be responsible for AD-FSP. Analysis of recombination events in three SPG3-linked families allowed us to narrow the critical interval from 9 to 5 cM. An approximately 5-Mb YAC contig comprising 32 clones and 90 STSs was built from D14S301 to D14S991, encompassing this region of 14q21. Fifty-six ESTs assigned previously to this region with radiation hybrid (RH) panels Genebridge 4 and G3 were precisely localized on the YAC contig. The 90 STSs positioned on the contig were tested on the TNG RH panel to compare our YAC-based map with an RH map at a high level of resolution. Comparison between our map and the whole genome mapping data on this interval of chromosome 14q is discussed.  相似文献   

10.
Von Hippel Lindau disease (VHL) is a rare autosomal dominant disease associated with tumors and cysts in multiple organ systems. The VHL disease gene is tightly linked to the polymorphic DNA marker 233E2 (D3S720) and flanked by 479H4 (D3S719) on its telomeric and RAF1 on its centromeric side. Two additional markers, D3S1038 and D3S601, have also been identified, and these markers, like D3S720, are very tightly linked to VHL. Previously 93 cosmid clones were mapped to the larger region, 3p24.2-pter, surrounding the VHL disease gene. Using a Southern-based screening strategy on pools of YAC clones we have isolated a contig of overlapping YAC clones that extends about 0.7 megabase centromeric, and about 1.3 megabases telomeric of D3S720 and contains all three tightly linked VHL markers. Individual YACs in this contig were hybridized to grids containing cosmids localized between 3p24.2-pter and to several cosmids localized by fluorescent in situ hybridization (FISH) to 3p25. A total of 28 cosmids were positioned on this contig of overlapping YAC clones. We have also identified homologous YAC clones to many additional cosmid clones localized between 3p24.2-p25, although these have not yet been precisely localized relative to the contig of YAC clones. This contig of YAC clones probably contains the VHL disease gene and should facilitate the isolation and characterization of this gene.  相似文献   

11.
12.
Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25-q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D10S193, D13S158, and D18S64) previously identified as potential linkages.  相似文献   

13.
The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene.  相似文献   

14.
15.
16.
Loss of heterozygosity on chromosome 11q23.3-qter is a frequent event in ovarian carcinoma, implying the existence of an important ovarian tumor suppressor gene(s) within the region. To refine a minimum region(s) of loss, 67 ovarian tumors were analyzed for loss of heterozygosity with eight microsatellite markers spanning 11q23.3-qter. Forty tumors (61%) demonstrated allelic losses. Twenty-seven of these had allelic losses on only part of 11q23.3, which enabled the identification of two distinct regions likely to harbor ovarian tumor suppressor genes. The proximal region, flanked by markers D11S925 and D11S1336, is less than two megabases while the second more distal region, flanked by markers D11S912 and D11S439, is approximately eight megabases. The refinement of these candidate tumor suppressor gene loci will facilitate future loss of heterozygosity studies and enable the isolation of candidate genes from these regions.  相似文献   

17.
The Werner syndrome locus (WRN) is located at 8p11-p12. To facilitate eventual cloning of the WRN gene, a 10,000-rad radiation-reduced hybrid (RH) cell panel was generated to map genetic markers, sequence-tagged sites (STSs), and genes in this region. A hamster cell line carrying an intact human chromosome 8 was fused with another hamster cell line. Two sets of hybrid cell panels from 2 separate fusions were generated; each panel consisted of 50 independent clones; 33 and 34 cell lines from the 2 fusions retained human chromsome material as determined by inter-Alu PCR. The combined panel was genotyped for 52 markers spanning the entire chromosome, including 10 genes, 29 anonymous polymorphic loci, and 13 STSs. Seventeen of these markers have not been previously described. Markers near the centromere were retained at a higher frequency than more distal markers. Fluorescence in situ hybridization was also used to localize and order a subset of the markers. A RH map of the WRN region was constructed using a maximum likelihood method, giving the following most likely order: D8S131-D8S339 (GSR)-D8S124-D8S278-D8S259-(D8S71)-D8S283- D8S87-D8S105-D8S135 (FGFR1)-D8S135PB-D8S255-ANK1. A genetic map of 15 short tandem repeat polymorphic loci in the WRN region was also constructed. The marker orders from the genetic and RH maps were consistent. In addition, an integrated map of 24 loci in the WRN region was generated using information from both genetic and RH mapping methods. A 1000:1 framework map for 6 loci (LPL-D8S136-D8S137-D8S87-FGFR1-ANK1) was determined by genetic mapping, and the resulting locus order was fixed during analysis of the RH genotype data. The resulting integrated map contained more markers than could confidently be ordered by either genetic or RH mapping alone.  相似文献   

18.
Inactivation of a suppressor gene by deletion of chromosome 9 is a candidate initiating event in bladder carcinogenesis. We have used 13 polymorphic markers spanning the length of chromosome 9 in order to map the region of deletion in human bladder carcinomas. In the majority of tumors loss of heterozygosity was found at all informative sites along the chromosome, indicating deletion of the entire chromosome. Nine tumors had selective deletions of chromosome 9. Mapping of the deleted region in these tumors suggests that the target gene is located between D9S22 at 9q22 and D9S18 at 9p12-13.  相似文献   

19.
A physical map of rice chromosome 5 was constructed with yeast artificial chromosome (YAC) clones along a high-resolution molecular linkage map carrying 118 DNA markers distributed over 123.7 cM of genomic DNA. YAC clones have been identified by colony and Southern hybridization for 105 restriction fragment length polymorphism (RFLP) markers and by polymerase chain reaction (PCR) screening for 8 sequence-tagged site (STS) markers and 5 randomly amplified polymorphic DNA (RAPD) markers. Of 458 YACs, 235 individual YACs with an average insert length of 350 kb were selected and ordered on chromosome 5 from the YAC library. Forty-eight contigs covering nearly 21 Mb were formed on the chromosome 5; the longest one was 6 cM and covered 1.5 Mb. The length covered with YAC clones corresponded to 62% of the total length, of chromosome 5. There were many multicopy sequences of expressed genes on chromosome 5. The distribution of many copies of these expressed gene sequences was determined by YAC Southern hybridization and is discussed. A physical map with these characteristics provides a powerful tool for elucidation of genome structure and extraction of useful genetic information in rice.  相似文献   

20.
Detailed deletion mapping of chromosome 6q has shown that the highest percentage of loss of heterozygosity (LOH) is located at 6q25-q27 and suggested that an ovarian cancer associated tumor suppressor gene may reside in this region. To further define the smallest region of common loss, we used 12 tandem repeat markers spanning a region no more than 18 cM, located between 6q25.1 and 6q26, to examine allelic loss in 54 fresh and paraffin embedded invasive ovarian epithelial tumor tissues. Loss of heterozygosity was observed more frequently at the loci defined by marker D6S473 (14 of 32 informative cases, 44%) and marker D6S448 (17 of 40 informative cases, 43%). Detailed mapping of chromosome 6q25-q26 in these tumor samples identified a 4 cM minimal region of LOH between markers D6S473 and D6S448 (6q25.1-q25.2). Loss of heterozygosity at D6S473 correlated significantly both with serous versus non-serous ovarian tumors (P=0.040) and with high grade versus low grade specimens (P=0.023). The results suggest that a 4 cM deletion unit located at 6q25.1-q25.2 may contain the putative tumor suppressor gene which may play a role in the development and progression of human invasive epithelial ovarian carcinomas (IEOC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号