首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为消除光源不稳定、光电器件的热零点漂移以及零 点漂移对测量准确度的影响,基于差分吸收检测法,设计一种检测天然气中H2S气体浓度 的高稳定性、高灵敏度的光子带隙传感器。为提高系统响应,采 用4段串联的空芯光子晶体光纤(HC-PBF)作为气体传感探头。对不同组分浓度 的H2S和CO2气体进行了检测,结果表明,系统响应时间为53s, 测量灵敏度可达2×10-6 mol/L。  相似文献   

2.
为提高光纤H2传感器的响应速度、稳定性和可 重 复性,本文分析了Pd-H传感机理,进而提出利用双靶溅射工艺在石英光学玻璃基底上制 备55nm厚的Pd-Y合金H2敏薄膜,采用双光路 检测技术设计并实现了反射式光纤束H2传感器系统。通、放H2实验结果表明,本文 研制的基于Pd-Y合金纳米薄膜的 传感器具有响应快速的特点,特别是在多次循环老化实验后表现出良好的稳定性和可重复性 。  相似文献   

3.
针对多层透射式光纤氢气(H2)传感器其特殊的多层结构造成了类似于F-P 腔 效应的周期性光谱特性变化尚未可知问题,构建了一种适用于多层 透射式探头的原位H2敏光谱观测系统,通过实验研究了在不同H2浓度下这种多层膜 结构的光谱特性, 讨论了光源波长变化对传感器测量稳定性的影响规律,为进一步提高传感器性能奠定了实 验基础。实验 结果表明,光源波长变化对传感器测量的可靠性有显著影响,但是通过扫描波长的方式测 量可以有效避免这类H2传感器的波长漂移问题,达到较高的测量可靠性。  相似文献   

4.
王蓉  钟用  赵雅  巫涛江 《压电与声光》2021,43(5):726-730
为了提高塑料光纤湿度传感器的灵敏度,该文利用商用塑料光纤、聚砜、二氧化锗(GeO2)和聚酰亚胺构建了一种新型结构的塑料光纤湿度传感器。首先将长度为0.5 m的商用塑料光纤中心部分(长5 cm)包层去除,并弯曲成U形(弯曲半径为2 cm),再将聚砜与GeO2的混合物涂覆在商用光纤纤芯表面,然后将涂覆聚砜与GeO2的塑料光纤在70 ℃下干燥10 h,最后涂覆上聚酰亚胺湿敏材料,在60 ℃下干燥后形成塑料光纤湿度传感器。实验研究了不同涂覆对塑料光纤传感器光传输特性及其灵敏度的影响,实验结果表明,在温度40 ℃、相对湿度10%RH~80%RH下,当塑料光纤纤芯直径为900 μm、聚砜与GeO2涂覆层厚200 μm、聚酰亚胺湿敏膜厚 20 μm时,传感器对湿度的响应灵敏度可达到-0.9 nW/(1%RH),是将20 μm聚酰亚胺湿敏材料涂覆在1 500 μm塑料光纤纤芯表面响应灵敏度的6.9倍。  相似文献   

5.
MP-CVD中CH4浓度对CH4/H2等离子体中基团的影响   总被引:1,自引:1,他引:0  
采用发射光谱法(OES)诊断了微波等离子体化学气 相沉积(MP-CVD)制备金刚石膜过程中CH4浓度对 CH4/H2等离子 体中基团分布的影响,并利用拉曼光谱对不同CH4浓度下沉积的金刚石膜生长面进行表 征。研究表明:CH4/H2等离子体中存在Hα、Hβ、Hγ、CH、C2基团,且各基团谱线强度随CH4浓度 的增加而增强,其中C2基团的光 谱强度显著增强;CH4/H2等离子体电子温度随CH4浓度的增加而上升;光谱空间诊 断发 现等离子体球中基团 沿径向分布不均匀,随CH4浓度增加,C2和CH基团分布的均匀性显著变差;沉积速率 测试表明,单纯增加CH4浓度不能有效提高金刚石膜的沉积速率;Raman光谱测试结果 表 明,低CH4浓度(0.8%)下沉积出的金刚石膜质量更理想。  相似文献   

6.
采用主客掺杂的方法制备PEI/PMMA共混有机聚合 物,并采用旋涂的方法研究了共混有机聚合物的成膜特性,包括薄膜厚度、平整度与旋涂薄 膜转速的关系,测量发现匀胶机 转速越高薄膜厚度越均匀,高速为1500r/min 时薄膜最大厚度差为0.626μm。有机聚合物 薄 膜的紫外透过光谱表明共混有机聚合物所成的薄膜对H2S气体有良好的响应,当混合液中 含有0.04g的PEI时,紫外透射率由86.81%下 降到55.54%,非常明显。紫外吸收光谱表明 薄膜和低浓度H2S气体的反应不明显,但是对高浓度的H2S有响应。通过高温处理与H2S气体反应后的薄膜,可以增大薄膜的紫外吸收强度。  相似文献   

7.
TiO2基染料敏化太阳能电池的表面修饰及性能研究   总被引:1,自引:1,他引:0  
采用水热法制备TiO2浆料,用La(NO3)3溶 液浸泡TiO2薄膜获得修饰电极。用X射线光电子能谱(XPS) 和扫描电子显微镜(SEM)对修饰电极的主要成分及形貌进行表征的结果显示,电极薄膜分为 上下两层,表 面包覆层粒径较大,为La2O3颗粒;下层颗粒粒径较小,为TiO2颗粒。电流-电压测 试结果显示,与修饰 前相比,用La(NO3)3溶液浸泡30min获得的膜电极性能最优,使 开路电压和短路电流分别提高了6.8%和 18.5%。电化学阻抗谱(EIS)测试结果表明,相同偏压下,TiO2/La 2O3电极界面复合电阻比TiO2要大,说明 La2O3包覆层在一定程度上抑制了界面的电子复合,改善了电池的光电化学性能。  相似文献   

8.
利用脉冲激光沉积(PLD)技术,通过双靶(Er3O2/LiNbO3)交替与脉冲激光作用,在SiO 2/Si 衬底上制备了c-轴择优取向的Er掺杂LiNbO3(Er:LiNbO3)薄 膜。用X射线衍射(XRD)、 场发射扫描电子显微镜(FESEM)、台阶仪及光致发光(PL)光 谱对制备的掺杂薄膜进行了表征。研究了衬底温度、O2压及沉积时间对Er:LiNbO3薄膜 结晶、表面形貌及 PL性能的影响。结果发现,衬底温度低于300℃时制备的Er:LiNbO 3薄膜为非晶膜,随衬底温度升高,薄膜出 现(006)衍射峰,并且其强度随衬底温度升高而增大;O2压变化对 利用双靶沉积获得的Er:LiNbO3薄膜择优 取向及(006)衍射峰强度影响不明显;沉积时间越长Er:LiNbO3薄膜 中Er3+浓度越大,但结晶择优取向 变差;利用532nm波长激光泵浦,室温下,在1537nm波长处测得很强的光致荧光峰,而且沉积时间越长谱峰越尖锐强 度越大。  相似文献   

9.
崔金玉  杨平雄 《红外》2018,39(12):8-11
以硝酸铜Cu(NO3)2·3H2O、硝酸铬Cr(NO3)3·9H2O、硝酸铋Bi(NO3)3·3H2O和乙二醇为原料,利用溶胶-凝胶工艺在石英衬底上制备了纳米Cu2Bi2Cr2O8薄膜。通过X射线衍射(X-Ray Diffraction, XRD)和拉曼测试对样品进行了表征。结果表明,Cu2Bi2Cr2O8薄膜具有良好的光学特性,其禁带宽度为1.49 eV;在磁性测试方面,Cu2Bi2Cr2O8薄膜呈现出了良好的铁磁性。  相似文献   

10.
提出一种镀有铜(Cu)膜的锥形光子晶体光纤(TPCF) 倏逝波耦合温度传感器。其结构是在两段单模光纤 (SMF)之间熔接上一段长为20mm的PCF,并在熔融拉锥后的TPCF表面 上蒸镀一 层Cu膜制成的。熔接机放电电流设置为10mA,拉锥机拉锥速度为0.08mm/s,H2流量为160mL/min。拉 锥完成后的TPCF锥腰最细处为68.47μm,传感器干涉条纹对比度为 8dB。将传感器放入温控箱中, 传感器两端分别连接至宽带光源(ASE)和光谱仪(OSA)上进行温度传感实验。实验结果表明, 当锥区长为10mm,镀 Cu膜厚为110nm时,在30~80℃温度变化范 围内,传感器的温度灵敏度最高可达0.075dB/℃。本文制作的传感 器 具有结构紧凑、制备简单和灵敏度高等特点,可用于工业生产、生物医学和电力电子等领域 的温度检测。  相似文献   

11.
A dinaphtho[3,4-d:3′,4′-d′]benzo[1,2-b:4,5-b′]dithiophene (Ph5T2)-modified copper phthalocyanine (CuPc) single crystal nanowire field-effect transistor (FET) with gas dielectric was fabricated as an organic gas sensor. This device exhibits the high response and the excellent controllable selectivity at room temperature. Its detection limit for NO2, NO, and H2S is down to sub-ppm level. Prior to surface modification, the CuPc nanowire FET shows the response as high as 1088% to 10 ppm H2S, but only 97.5% to 10 ppm NO2. After Ph5T2 modification, the response to 10 ppm H2S is decreased by one order of magnitude, but is dramatically improved up to 460% to 10 ppm NO2. The responses towards H2S and NO2 respectively for pristine and the modified sensor are higher than those of most reported organic sensors. The gas-sensing results reveal that Ph5T2 modification can transform the selectivity of the sensor from H2S to NO2. The controllable modulation of gas selectivity is related to the formed organic heterojunctions between CuPc and Ph5T2, where the hole carriers of CuPc nanowire are modulated by these heterojunctions, resulting in the changed adsorption behavior towards different gases.  相似文献   

12.
A high‐performance, transparent, and extremely thin (<15 nm) hydrogen (H2) gas sensor is developed using 2D electron gas (2DEG) at the interface of an Al2O3/TiO2 thin film heterostructure grown by atomic layer deposition (ALD), without using an epitaxial layer or a single crystalline substrate. Palladium nanoparticles (≈2 nm in thickness) are used on the surface of the Al2O3/TiO2 thin film heterostructure to detect H2. This extremely thin gas sensor can be fabricated on general substrates such as a quartz, enabling its practical application. Interestingly, the electron density of the Al2O3/TiO2 thin film heterostructure can be tailored using ALD process temperature in contrast to 2DEG at the epitaxial interfaces of the oxide heterostructures such as LaAlO3/SrTiO3. This tunability provides the optimal electron density for H2 detection. The Pd/Al2O3/TiO2 sensor detects H2 gas quickly with a short response time of <30 s at 300 K which outperforms conventional H2 gas sensors, indicating that heating modules are not required for the rapid detection of H2. A wide bandgap (>3.2 eV) with the extremely thin film thickness allows for a transparent sensor (transmittance of 83% in the visible spectrum) and this fabrication scheme enables the development of flexible gas sensors.  相似文献   

13.
An optical hydrogen sulfide (H2S) sensor based on wavelength modulation spectroscopy with the second harmonic (2f) corrected by the first harmonic (1f) signal (WMS-2f/1f) is developed using a distributed feedback (DFB) laser emitting at 1.578 µm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm-1 in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s (in concentration range of 15.2—45.6 mg/m3), respectively. The maximum relative deviation for continuous detection (60 min) of 30.4 mg/m3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.  相似文献   

14.
We demonstrate the chemiresistive NO2 gas sensor based on DBSA doped PPy–WO3 hybrid nanocomposites operating at room temperature. The sensor was fabricated on glass substrate using simple and cost effective drop casting method. The gas sensing performance of sensor was studied for various toxic/flammable analytes like NO2, C2H5OH, CH3OH, H2S and NH3. The sensor shows higher selectivity towards NO2 gas with 72% response at 100 ppm. Also the sensor can successfully detect low concentration of NO2 gas upto 5 ppm with reasonable response of 12%. Structural, morphological and compositional analyses evidenced the successful formation of DBSA doped PPy–WO3 hybrid nanocomposite with uniform dispersion of DBSA into PPy–WO3 hybrid nanocomposite and enhance the gas sensing behavior. We demonstrated that DBSA doped PPy–WO3 hybrid nanocomposite sensor films shows excellent reproducibility, high stability, moderate response and recovery time for NO2 gas in the concentration range of 5–100 ppm. A gas sensing mechanism based on the formation of random nano p–n junctions distributed over the surface of the sensor film has been proposed. In addition modulation of depletion width takes place in sensor on interaction with the target NO2 gas has been depicted on the basis of schematic energy band diagram. Impedance spectroscopy was employed to study bulk, grain boundary resistance and capacitance before and after exposure of NO2 gas. The structural and intermolecular interaction within the hybrid nanocomposites were explored by Raman and X-ray photoelectron spectroscopy (XPS), while field emission scanning electron microscopy (FESEM) was used to characterize surface morphology. The present method can be extended to fabricate other organic dopent-conducting polymer–metal oxide hybrid nanocomposite materials and could find better application in the gas sensing.  相似文献   

15.
Uniform SnO2 nanorod arrays have been deposited at low temperature by plasma‐enhanced chemical vapor deposition (PECVD). ZnO surface modification is used to improve the selectivity of the SnO2 nanorod sensor to H2 gas. The ZnO‐modified SnO2 nanorod sensor shows a normal n‐type response to 100 ppm CO, NH3, and CH4 reducing gas whereas it exhibits concentration‐dependent n–p–n transitions for its sensing response to H2 gas. This abnormal sensing behavior can be explained by the formation of n‐ZnO/p‐Zn‐O‐Sn/n‐SnO2 heterojunction structures. The gas sensors can be used in highly selective H2 sensing and this study also opens up a general approach for tailoring the selectivity of gas sensors by surface modification.  相似文献   

16.
A novel H2 gas sensor based on a SnO2 nanostructure was operated at room temperature (RT) (25°C). The SnO2 nanostructure was grown on Al2O3 substrates by a sol–gel spin coating method. The structural characteristics, surface morphology, and gas sensing properties of the SnO2 nanostructure were investigated. Thin film annealing at 500°C produced a high-quality SnO2 nanostructure with a crystallite size of 33.98 nm. A metal–semiconductor–metal gas sensor was fabricated using the SnO2 nanostructure and palladium metal. The gas sensor exhibited a sensitivity of 2570% to 1000 ppm H2 gas at RT. The sensing measurements for H2 gas at different temperatures (RT to 125°C) were repeatable?for 50 min. Sensor sensitivity was tested under different H2 concentrations (150 ppm, 250 ppm, 375 ppm, 500 ppm, and 1000 ppm) at different operating temperatures. Adding glycerin to the sol solution increased the porosity of the SnO2 nanostructure surface, which increased the adsorption/desorption of gas molecules which leads to the high sensitivity of the sensor. Therefore, this H2 gas sensor is a suitable?portable?RT gas sensor.  相似文献   

17.
Copper (Cu) doped zinc oxide (ZnO) thin films were successfully prepared by a simple sol-gel spin coating technique. The effect of Cu doping on the structural, morphology, compositional, microstructural, optical, electrical and H2S gas sensing properties of the films were investigated by using XRD, FESEM, EDS, FTIR, XPS, Raman, HRTEM, and UV–vis techniques. XRD analysis shows that the films are nanocrystalline zinc oxide with the hexagonal wurtzite structure and FESEM result shows a porous structured morphology. The gas response of Cu-doped ZnO thin films was measured by the variation in the electrical resistance of the film, in the absence and presence of H2S gas. The gas response in relation to operating temperature, Cu doping concentration, and the H2S gas concentration has been systematically investigated. The maximum H2S gas response was achieved for 3 at% Cu-doped ZnO thin film for 50 ppm gas concentration, at 250 °C operating temperature.  相似文献   

18.
In this paper, we demonstrate the acetylehe (C2H2) sensor with high sensitivity using a hollow-core photonic bandgap fiber (HC-PCF). Experiments for measuring C2H2 concentrations in gas mixture are performed. Using a 2 m-long HC-PCF as gas cell, the spectrum of acetylene at n1+n3 band has been measured, and the P11-branch has been selected for the purpose of sensing. A minimum detectivity of 143 parts per million by volume (ppmv) for the system configuration is estimated.  相似文献   

19.
Polyaniline (PAni)-tungsten oxide (WO3) hybrid nanocomposites sensor have been lucratively synthesized by in-situ chemical oxidative polymerization method by entrapping tungsten oxide nanoparticles (10–50%) in the polyaniline matrix on precleaned glass substrate. The structural, morphological and surface composition elucidation of PAni-WO3 hybrid nanocomposites were explored by X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS). The existence of WO3 in PAni matrix and interaction between them was confirmed using XRD and Raman spectroscopy. The incorporation of WO3 nanoparticles into the PAni matrix introduces porosity which enhanced gas sensing properties. The TEM image of PAni-WO3 hybrid nanocomposite film exploded the average diameter of WO3 nanoparticles ranging from 40 to 50 nm. Chemical composition of PAni-WO3 hybrid nanocomposites was characterized by using X-ray photoelectron spectroscopy (XPS). In order to investigate the gas sensing parameter of PAni-WO3 hybrid nanocomposite, hybrid nanocomposite film was exposed to different oxidizing gases (Cl2, NO2) and reducing gases (NH3, H2S, CH3OH, C2H5OH) in range 5–100 ppm concentration of gas. It was observed that the sensors of PAni-WO3 hybrid nanocomposites showed better sensitivity, selectivity, stability and reproducibility compared to pure PAni and pure WO3. PAni-WO3 (50%) hybrid nanocomposite sensor operating at room temperature reveals maximum response of 158% towards 100 ppm of NH3 gas and also capable to respond very little concentration of 5 ppm NH3 gas with reasonable response of 24%. The gas sensing mechanism of the nanocomposites in presence of air and with target NH3 gas atmosphere was discussed in detail with the help of energy band diagram. The interaction of NH3 and NO2 gas with PAni-WO3 hybrid nanocomposite sensor was investigated by employing an impedance spectroscopy also.  相似文献   

20.
The energy gap and its temperature coefficient are calculated depending on the concentration of defects in silver telluride with a Te and Ag excess. On the basis of the obtained data, the correlation between the charge-carrier energy spectrum and the silver-telluride defectness is analyzed. It is established that the correlation is a reflection of more general fundamental relations between the energy structure and the defect concentration in Ag2Te caused by ions and vacancies of silver atoms in the sublattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号