首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
交流线路与±800kV直流线路共用走廊的情况将在我国出现,因此需要研究该种线路地面混合电场的计算方法,以满足工程设计和环境保护需要。在分析同走廊架设的交流线路与±800kV直流线路相互影响的基础上,提出了一种计算该类线路地面混合电场的方法。通过对比使用该方法得到的计算结果与不考虑两种线路相互影响时的计算结果,得到如下结论:相对于忽略交直流线路的相互影响,当考虑其相互影响时,在同走廊交直流线路中心附近,地面混合电场的瞬时最大值横向分布有波动;两种计算方法得到的地面混合电场有效值分布曲线基本重合;在一个交流周期内,同走廊线路地面混合电场的最大值与单独±800kV直流线路地面合成电场的最大值差别很小。  相似文献   

2.
提出了一种基于电晕理论来计算共走廊线路地面电场分布的方法,详细分析了±800kV直流输电线路与500kV交流线路共走廊时的地面电场分布规律,研究了线路接近距离、导线高度和杆塔结构等对混合电场最大值的影响,讨论了混合电场限值和线路间的最小接近距离.研究表明:线路接近距离和直流线路高度对混合电场分布影响较大,而杆塔结构和交流线路高度影响较小;地面电场最大值随着接近距离的增大,呈现先增大后减小的趋势;±800kV直流输电线路与500kV交流线路共走廊时的最小接近距离在70m~85m.  相似文献   

3.
吴桂芳  余军  郭贤珊  鞠勇 《中国电力》2007,40(12):22-26
±800kV直流线路在一些地区将与1000kV交流线路同走廊架设,合理确定交直流线路之间的接近距离,对控制混合电场和充分利用走廊资源非常重要。忽略交直流电场之间的相互作用,研究了±800kV直流线路与1000kV交流线路同走廊架设时的电场分布规律;在特高压交直流线路电场限值的基础上,采用加权方法控制混合电场,确定了特高压交直流线路同走廊时允许的最小接近距离。结果表明,当±800kV线路和直流1000kV交流线路均分别采用经过非居民区和居民区所要求的导线最小对地高度时,考虑电场的影响,特高压交直流线路的最小接近距离分别为85 ̄100m和95 ̄115m。如果走廊宽度受到限制,可适当增加交直流线路的对地高度来缩小接近距离。  相似文献   

4.
同走廊两回±800 kV直流线路不久将在中国出现,需要对该种线路的地面合成电场进行研究,为工程设计和环境保护提供技术依据。对同走廊两回直流线路极导线按不同方式布置时的地面合成电场进行模拟试验,获得了其横向分布规律。给出一种同走廊两回直流线路地面合成电场的计算方法,该方法考虑了影响此种线路地面合成电场的多种重要因素,模拟试验验证了所提计算方法的有效性。采用该方法分析了同走廊两回±800 kV直流线路地面合成电场的分布特点。结果表明:不同的极导线布置方案不会显著影响同走廊两回直流线路地面最大合成电场的大小,但会影响其分布位置;同走廊两回直流线路地面最大合成电场的绝对值与单回直流线路运行时差别不大;两回±800 kV直流线路同走廊临近架设与相距较远距离架设相比,能大幅减少线路走廊宽度和工程拆迁费用。  相似文献   

5.
特高压直流线路与交流线路同走廊时混合电磁环境的计算   总被引:6,自引:3,他引:3  
总结了工频电场、合成电场、工频磁场、直流磁场、可听噪声和无线电干扰的标准,提出了交直流同走廊架设时混合电磁环境的合成和评价方法。以上海地区±800kV直流线路与不同电压等级多回交流线路同走廊为例,对混合电磁环境进行了分析计算,包括混合电场、混合磁场、可听噪声和无线电干扰。提出了±800kV直流线路及500kV、220kV交流线路间平行接近距离,给出了各条线路导线对地最小高度,确定了集中规划走廊内建筑物及民房的最小拆迁范围。  相似文献   

6.
为提高单位走廊输电能力,我国向家坝—上海与锦屏—苏南两回±800 kV直流线路采用同走廊架设。两回±800 kV直流线路同走廊架设在世界上无工程应用先例,需要对其地面合成电场进行研究,以满足工程设计和环境保护需求。文中提出了一种基于上流有限元法的同走廊两回直流线路地面合成电场计算方法,模拟试验线段试验结果验证了计算方法的有效性。计算和试验结果都表明:不同的极导线布置方案不会显著影响地面最大合成电场的大小,但会影响其分布位置;同走廊两回直流线路地面最大合成电场的绝对值与单回直流线路的差别不大。最后对向家坝—上海与锦屏—苏南同走廊两回±800 kV直流线路的地面合成电场进行计算分析。  相似文献   

7.
高压交流与高压直流输电线路同杆塔架设能够有效缓解输电走廊紧缺问题。同塔交直流线路产生的混合电场的复杂性及其预测的困难性,成为制约该种线路设计和发展的关键因素。考虑了交流导线电晕放电和直流导线电晕放电之间的相互影响,基于上流有限元法,提出了种交直流线路同塔架设时混合电场的时域计算方法,通过试验线段的实验验证了算法的有效性;对不同等级交流电压情况下地面电场和离子流密度进行了计算,计算结果表明,交流线路对直流合成电场有明显的"屏蔽作用",且交流电压越高,地面电场直流分量和离子流密度越小;同时对空间电荷的运动轨迹进行了模拟,得到了交流电场对直流离子流场的作用机制,交流导线对空间电荷的吸引是导致地面电场直流分量和离子流密度减小的重要原因。  相似文献   

8.
基于有限元和有限体积法的混合方法,合理地考虑了直流电晕放电和交流电晕放电之间的相互影响,解决了交直流同塔输电线路地面电场的分布计算问题。通过小尺寸模型的实验了验证计算方法的有效性。针对一回800kV直流输电线路和两回500 kV交流输电线路同塔架设的实际情况,计算了不同运行方式下的地面电场的直流分量、交流分量和离子流密度的分布情况。计算结果表明,由于交流输电线路的电晕放电,地面电场直流分量和离子流密度会有所降低。同时,地面交、直流电场均随线路高度的升高而降低,但是工频电场的变化程度比直流电场要大。  相似文献   

9.
杨勇 《电网技术》2013,(6):1531-1535
高压直流线路在实际工程中已得到广泛应用,国内外学者对该种线路的地面合成电场计算问题进行了大量研究,提出了多种数值计算方法,但对直流线路负极悬空时地面合成电场计算方法问题的讨论却很少。给出了直流线路负极悬空时导线周围标称电场及悬空导线电位的一种计算方法,对比分析了800 kV直流线路处于不同运行状态时的地面标称电场分布和导线表面电场,得到了悬空导线的电位与携带电荷量的线性关系。将上述方法与有限元方法相结合计算了负极悬空800 kV直流线路的地面合成电场,得到了悬空极导线合成电场电位的变化对该种线路地面合成电场最大值的影响规律。最后,计算结果显示负极悬空±800kV直流线路地面合成电场的最大值要小于负极接地情况下的最大值,它们的相对差别不到4%。  相似文献   

10.
交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线路分别与单回?1100 k V直流线路同塔架设为例,分析了交流线路在不同布置方式与相序排列方式下地面混合电场的分布特性与规律,并据此计算了导线对地最小高度和走廊宽度。结果表明,根据混合电场交、直分量的横向衰减特性,从走廊中心向外,地面混合电场可分为交流分量占主导的"交流区",交、直流分量比例相当的"混合过渡区"以及直流分量占主导的"直流区",为保证地面交、直流分量"错峰"布置,两回交流线路应采用垂直或倒三角排布方式,此时导线最小对地高度按照交流线路单独运行时的情况设计即可。当交流为750 kV线路时,走廊宽度主要由交流电场控制;交流为330 kV线路时,走廊宽度则由交直流电场分量共同控制。最终推荐采用垂直排布的相序6和倒三角排布的相序4两种布置方式。  相似文献   

11.
对特高压交直流同走廊情况下的电磁环境进行了电气绝缘距离、线路导线间距离的计算,以内蒙古某1 000kV线路与另一条±800kV直流线路共用走廊为例进行计算与分析,得出混合电场满足控制值要求为:同塔双回1 000kV交流线路情况下,导线对地最小高度为21m和18m时,与±800kV直流线路间距62m;2条单回1 000kV交流线路情况下,导线对地最小高度为23m和18m时,2条单回1 000kV交流线路间距74m,与±800kV直流线路间距67m,实现了输电线路与环境保护、土地资源之间的合理匹配。  相似文献   

12.
针对交直流并行输电线路下方地面混合电场的特性,对交直流电场的相互影响作了分析,并对单根交流导线和单根直流导线形成的混合电场进行了试验研究。采用了基于Deutcsh假设的计算方法,对试验模型的地面混合电场进行了理论数值计算,试验结果与理论计算的结果相吻合,验证了该算法的有效性。最后,计算了实际的特高压交直流并行输电线路的地面混合电场,并与忽略交直流电场相互影响的计算结果进行对比,得出了交流线路的屏蔽效应将使地面直流离子流电场强度减小等结论。  相似文献   

13.
《河北电力技术》2014,(2):54-54
<正>4月1日至2日,国家电网公司组织召开单项研究专题验收会,由中国电科院承担"同走廊特高压交直流线路电磁环境评价方法研究"和"交流输电线路附近民房曝露处工频电场及效应研究"项目顺利通过专家组验收。"同走廊特高压交直流线路电磁环境评价方法研究"项目以1000kV同塔双回交流线路为依托,研究了1 000kV同塔双回交流线路与特/超高压直流输电线路同走廊架设时的地面混合电场、可听噪声和无线电干扰的预测、测量和评  相似文献   

14.
交、直流线路同走廊架设将会产生不同于单独交流或单独直流线路的电场效应问题。为有效预测这种线路的电场,基于上流有限元法和向后Euler方法,提出了一种交、直流混合电场的计算方法,可以在计算过程中考虑交流线路电压瞬时变化对直流导线电晕活动及空间电荷运动的影响。测量试验线段验证了该方法的有效性。对交、直流混合离子流场中离子的运动进行了模拟,并计算了不同交流电压等级、不同交、直流线路接近距离下的地面电场和离子流密度。结果表明:交、直流线路同走廊架设时,地面混合电场交流分量、直流分量和离子流密度均有所减小,并且接近距离越小、交流电压等级越高,混合电场直流分量和离子流密度越小;交流电场的扰动使直流线路下方空间电荷的分布向线路两侧更加分散,是导致直流分量和离子流密度减小的重要原因。  相似文献   

15.
同走廊双回直流线路地面合成电场计算   总被引:1,自引:0,他引:1  
我国部分地区输电走廊非常紧张,为了提高单位走廊的电能输送能力,可以采用更有效率的输电线路方式,同走廊双回直流线路是一种备选方案,然而双回直流线路同走廊架设在世界上尚无工程应用先例。文中给出了一种同走廊双回直流线路地面合成电场的计算方法,考虑了影响此种线路地面合成电场的多种重要因素,并使用该方法分析了同走廊双回直流线路地面合成电场的分布特点。结果表明:不同的极导线布置方案不会显著影响地面最大合成电场的大小,但会影响其分布位置;同走廊双回直流线路地面最大合成电场的绝对值与单回直流线路的差别不大;同走廊双回直流线路能在一定程度上提高单位走廊的电能输送能力。  相似文献   

16.
为了确认雨天时直流±800 kV与交流500 kV并行输电线路下方的混合电场对人体的影响,结合3维优化模拟电荷法与Deutsch假设,考虑雨天环境,计算了直流±800 kV与交流500 kV并行输电线路下方的3维标称电场和离子流场,并通过Matlab最终计算得到混合电场。计算结果表明,雨天近地面的电场分布呈波浪状。雨天对电场具有部分屏蔽作用,且随着降雨强度的增大,屏蔽作用越强。人撑伞站立在雨中,头顶附近的电场发生畸变,但是人体表面感应电流密度与感应电流基本都在INCIRP所规定的安全范围之内,因此不会对人体造成伤害。  相似文献   

17.
在有风条件下,特高压直流与交流并行线路的空间离子流场除受直流电场与交流电场的共同影响以外,还会在横向风力作用下进行新的迁移运动,进而改变地面混合电场的分布特性。采用区域分解法求解横向风存在时的混合场问题,对方法的边界条件和计算流程均进行了改进。结果表明,处于直流线路下风区的直流电场分量横向衰减速率随着风速的增加明显变缓,而上风区的直流电场大幅减小。因此,风速对于混合电场分布的影响程度与交直流线路的相对位置有关。对于同走廊线路,当交流线路处于直流线路下风区时,横向风明显增强了交流线路附近区域内直流分量;而当交流线路处于上风区时,即使风速很小,交直流线路之间的走廊内直流分量也会基本衰减至标称电场。对于同塔线路,由于交直流电场各自的部分特点,横向风不会增强交直流分量的叠加效果。  相似文献   

18.
高压交直流输电线路同走廊架设可以提高输电走廊利用率,但是线路电晕放电会产生混合电场问题。本文搭建平行架设的单极直流导线和单相交流导线实验平台,测量导线不同布置方式下的地面混合电场。在验证混合有限元-有限体积法的有效性基础上,对地面混合电场进行计算。通过实验和计算,获得交流导线电压、导线高度、邻近距离对地面混合电场特性的影响规律。本文的研究结果可为交直流同走廊架设的输电线路设计提供参考。  相似文献   

19.
为了准确计算交直流并行输电线路线下混合电场,针对交流输电线路对直流导线表面电场的影响进行了分析,采用寻优算法优化模拟电荷位置,分析了直流导线表面电场随交流导线电压变化的情况.在考虑交流线路对直流线路空间离子轨迹影响的情况下,基于Deutsch假设计算了直流输电线路线下合成电场的瞬时最大值,提出了一种合理的假设,从而准确地计算了并行输电线路线下混合电场.最后分析了线路邻近间距对线下混合电场的影响.结果表明,交流输电线路对直流导线的起晕以及直流线下空间离子流场有较大影响,在计算时应予以考虑,交直流线路间距对直流线路线下混合电场有很大影响,在设计线路时应予以考虑.  相似文献   

20.
为了对与交流线路邻近的直流输电线路的电晕损失进行预测,提出了一种计算交直流混合输电线路走廊中直流输电线路电晕损失的数值计算方法。该方法采用有限元和有限体积法计算交直流输电线路产生的混合离子流场,通过在每一时间步上进行迭代求解导线表面的电荷密度,使其满足Kaptzov条件,进而获得导线电晕电流,实现电晕损失的计算。该方法采用隐式时间差分,可采用较大的时间步长,提高了计算速度。通过与多种结构交直流邻近线路模型的测量结果的对比,验证了算法的有效性。利用实验和仿真分析,获得了电晕损失随邻近距离、交流电压值的变化规律。最后,基于所提出的方法对与1 000 kV交流线路邻近的±800 kV直流线路的电晕损失进行了分析计算,得到了不同接近距离时的直流电晕损失值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号