首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general chart is developed for calculating the collector area required to provide a prescribed value of the annual load fraction for solar heating systems. The relationship between collector area and annual load fraction can then be easily obtained for specified collector design parameters, load and location. The construction of the chart is based on correlating data generated by the f-chart method. Data of 13 locations in the U.S.A. are considered. The good agreement of the results obtained by the present simple method and the f-chart for both space and combined space/domestic water heating proves that the two methods are almost of the same accuracy. Since the present chart is not location dependent and allows direct comparison of different collectors, it is a very valuable design aid for sizing and selecting solar collectors.  相似文献   

2.
Energy savings for solar heating systems   总被引:1,自引:0,他引:1  
In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper.  相似文献   

3.
This paper presents a mathematical model of a solar water-heating system. The model is duly supported by experiment. The solar water heating system, comprised of 12 collectors and a storage tank for both natural and forced circulation with and without withdrawal of hot water from the storage tank, has been studied. The analysis has also been made for various configurations of the system viz. series, parallel and a combination. It is concluded that, under thermosyphon, true parallel, and in forced circulation, true series combinations perform better.  相似文献   

4.
Solar energy will be utilized only if it proves to be economical. In this paper, we evaluate the economic feasibility of the use of solar energy for space and domestic water heating systems for a house in Benghazi, Libya. A comprehensive evaluation considerering 324 cases representing the proper ranges of economic and load factors and based on the annual equivalent cost approach is given. The optimum collector area for each case is determined. The results obtained and relationships developed permit generalizations that can be applicable in other locations.  相似文献   

5.
This paper presents an analysis of the performance of a solar water heating system with natural thermosyphon circulation between the collector and the storage tank. The analysis is based on the formulation by Ong except that provision for withdrawal of hot water from the tank (for domestic/ industrial use) has been made in the energy balance equation; further in contrast to the use of the finite difference method by Ong, explicit expressions have been obtained. The results of the present analysis (in the absence of withdrawal of hot water from the tank) are seen to be in better agreement with experiments than the corresponding results of Ong, obtained by use of the finite difference method.

Numerical results, corresponding to hot water retrieved from the storage tank, have been presented for two modes of hot water withdrawal viz. the constant flow rate and constant mean storage tank water temperature.  相似文献   


6.
A simple correlation approach has been adopted to allow calculation of the convective heat transfer coefficients in flat-plate collectors over the whole range of latitudes. Data on the overall top loss coefficient is in good agreement with a recently proposed empirical approach.  相似文献   

7.
An analysis is presented for the monthly performance evaluation of a simple design low cost solar water heating systems. A sample of typical results is presented which confirms their suitability as solar heating systems for summer peacking or as solar preheaters for year around loads.  相似文献   

8.
The thermal performance of solar air heaters consisting of a porous textile absorber between two PVC foils has been investigated. The efficiency of the heaters depends strongly on the characteristics of the textile forming the absorber and on the back insulation. For an incident solar radiation of 687 W/m2 at the collector's surface, a temperature rise of 16-6°C in the air flowing through the solar collector at a rate of 800 m3/h, was achieved, thus yielding an efficiency of nearly 71 percent. Further it was found that the linear approximation for the Hottel-Bliss equation leads to erroneous estimations for the collector's parameters when the absorber is porous; for the same type of collector with a denser textile as absorber, however, such an approximation yields, as usual, correct numerical values for the characteristic parameters of the collector.  相似文献   

9.
Process simulation has become an accepted tool for the performance, design, and optimization of thermal processes. Solving the mathematical models representing solar heating process units and systems is one of the most tedious and repetitive problems. Nested iterative procedures are usually needed to solve these models. To tackle these problems, several researchers have developed different methods, techniques, and computer programs for the simulation of very wide verity of solar heating process units and systems.It is of interest in this work to characterize and classify these methods, techniques, and programs in order to better understand their relations, types, structures, and procedures.The simulation problems are outlined; the simulation programs are grouped into two main types; special purpose, and general-purpose programs. Sequential and simultaneous computational sequences are illustrated. Simulator structure, program evaluation, and numerical techniques are summarized.By considering the unit and/or system entropy generation as well as the energy and material balances equations, more realistic models can be obtained. Also, rapid development of computer hardware and software will suggest new techniques and programs to be considered. These progress directions are noted.  相似文献   

10.
The sizing of the solar installation of an individual dwelling is a problem which can be solved in many ways. The approach described in this paper is a simplified procedure of considerable interest. It requires only a small quantity of data and can be computed in a short time. The performance of this procedure was evaluated by a more complex sizing method based on detailed simulation. The simplified procedure was applied to the case of an individual dwelling using a solar collector field to produce domestic hot water and space heating. The building and the solar installation have then been modelled with the software TRNSYS 16 and their behaviour was simulated during a whole year. The results obtained are particularly close to the ones expected by the simplified sizing procedure.  相似文献   

11.
Temperature control systems based on solar and wind energy differ in two important ways from existing fossil fuel systems. One is that solar systems, at least active solar systems, all have some kind of energy storage, the other is that the source of energy in a solar and wind energy system is variable and uncontrollable. Because of these added complications and the high capital investment required for solar and wind energy systems, considerably more sophisticated techniques are required for the design of those systems. In this study, a new technique is applied to the optimal control problem of solar heating systems.  相似文献   

12.
The effect of solar radiation availability on the performance of different solar heating systems has been studied. The systems include a solar water heater, passive solar houses and district solar heating systems with seasonal heat storage. Also, different collector orientations and collector types have been investigated. The hourly radiation data were generated by a simple computational simulation procedure. It was found that district solar heating systems with concentrating collectors and passive solar houses showed the largest variations for the given conditions.  相似文献   

13.
Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values.  相似文献   

14.
In addition to the solar water heating (SWH) system, other domestic water heating systems used in Jordan were considered in terms of benefits and costs using the Analytic Hierarchy Process. In terms of cost, the SWH system was the least expensive. On a percentage basis, the SWH cost about 13% compared to the most expensive heating system, LPG, of about 28%. In terms of benefits, the SWH was also the most beneficial. Approximately, the SWH benefits were about 31%, while the least benefits were obtained from the kerosene water heating system, which is about 9%. By considering both cost and benefit (i.e. cost-to-benefit ratio), solar was also the least expensive, about 7%, with kerosene being the most expensive, over 30%.  相似文献   

15.
A simulation model of the flat-plate solar water heating system is used to trace the flow of energy through the system from the collector to storage and load for a system operating under idealised sunlight conditions.  相似文献   

16.
In this paper, a techno-economic model has been developed for a hybrid solar forced-convection water heating system. Two options of auxiliary energy use, viz. (A) an instant electric heater and (B) use of diesel as the auxiliary energy fuel, have been considered. Numerical calculations have been made for the climate of Delhi, India, corresponding to the two representative demand patterns, viz. (i) hot-water demand of big residential buildings and (ii) industrial hot-water demand. Taking into account the life, capital cost and the maintenance cost of the solar and auxiliary systems, the cost of useful energy has been calculated for different values of collector area and tank capacity. This exercise, thereby, yields the optimum values of collector area and tank capacity corresponding to the minimum cost of useful energy. The effect of government subsidy on the optimized values of collector area, tank capacity and cost of useful energy has also been investigated.  相似文献   

17.
Low cost CPC solar collectors were designed, constructed and tested. The collectors consist of two separate absorbers, which are horizontally incorporated in a stationary asymmetric CPC mirror. The efficient operation of the proposed collectors is due to the direct absorption of a large part of the incoming solar radiation and to the thermal losses suppression by the inverted surface of both absorbers. Two collector types with the same basic design are presented. The first type has tubular absorbers which are used for direct water heating and the second has flat fin type absorbers with pipe. Test results showed that the proposed collectors operate efficiently and are suitable for hot water applications.  相似文献   

18.
This study outlines the economic feasibility for utilization of solar heating systems for some buildings in the selected typical cities in different climatic regions of Iran. The feasibility of application of the solar heating systems has been determined by means of proper economic criteria and a life time of 25 years for capital investment. It has been found that utilization of such systems could be feasible in some of the regions for specific applications.  相似文献   

19.
A study is made for comparing the maximum seasonal energy yield obtainable by solar collectors for space heating application. Different glazing combinations with glass and plastic as glazing materials are considered. The study is made for four different locations. The performance of eight glazing combinations with covers ranging in number from one to three is compared to obtain the optimum combination for each location. The results show that selecting the optimum glazing combination improves the performance significantly. In general, plastic covers give higher yield. The study confirmed that the use of two covers is justified in cold, cloudy climates while a single cover is suitable for temperate climates. In most cases three covers lead to a significant reduction in the yield. Replacing plastic by glass as a top cover for longer life results in a small yield reduction. Some of the other conclusions are that the ratio of average to normal transmittance-absorptance product changes significantly with location and month of the year. However, the seasonal average value of this ratio is almost constant for any number of covers but changes with location.  相似文献   

20.
The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish design reference year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University of Denmark in Kgs. Lyngby. The data from DRY data file are used for any location in Denmark. The thermal performances of the solar heating systems are calculated by means of validated computer models. The measured yearly solar radiation varies by approximately 23% in the period from 1990 until 2002, and the investigations show that it is not possible to predict the yearly solar radiation on a tilted surface based on the yearly global radiation.The annual thermal performance of solar combi systems cannot with reasonable approximation be fitted to a linear function of the annual total radiation on the solar collector or the annual global radiation. Solar combi systems with high efficient solar collectors are more influenced by weather variations from one year to another than systems with low efficient solar collectors.The annual thermal performance of solar collectors cannot be predicted from the global radiation, but both the annual thermal performance and the annual utilized solar energy can with a reasonable approximation be fitted to a linear function of the yearly solar radiation on the collector for both flat plate and evacuated tubular solar collectors. Also evacuated tubular solar collectors utilize less sunny years with large parts of diffuse radiation relatively better than flat plate collectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号