首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以TiO2、B2O3、Mg粉为原料,引入稀释剂NaCl,通过自蔓延高温燃烧合成法宏量制备了亚微米TiB2粉体,并对其进行了SEM(扫描电镜)、EDS(能谱)、XRD(X射线衍射)和粒度分析.用原子吸收光谱测定了浸出产物TiB2粉体中杂质Mg,O的含量.结果表明:稀释剂加入量对样品形貌、粒度、物相有明显影响.随着NaCl含量的增加,制备的TiB2粉体的平均颗粒尺寸从496nm降低到268nm.产物浸出前主要由MgO,NaCl,TiB2和少量Mg3B2O6组成;浸出后前两相消失,产物为TiB2和少量Mg3B2O6.当原料中NaCl加入量k=0.5,1.0,1.5,2.0mol时,浸出产物中Mg3B2O6杂质含量极少,产品纯度均超过98%.稀释剂可以降低颗粒尺寸,提高产物纯度.采用此种自蔓延高温燃烧合成法可以大规模制备超细TiB2粉体.  相似文献   

2.
以TiO2、B2O3、Mg粉为原料,引入稀释剂NaCl,通过自蔓延高温燃烧合成法宏量制备了亚微米TiB2粉体,并对其进行了SEM(扫描电镜)、EDS(能谱)、XRD(X射线衍射)和粒度分析。用原子吸收光谱测定了浸出产物TiB2粉体中杂质Mg,O的含量。结果表明:稀释剂加入量对样品形貌、粒度、物相有明显影响。随着NaCl含量的增加,制备的TiB2粉体的平均颗粒尺寸从496nm降低到268nm。产物浸出前主要由MgO,NaCl,TiB2和少量Mg3B2O6组成;浸出后前两相消失,产物为TiB2和少量Mg3B2O6。当原料中NaCl加入量k=0.5,1.0,1.5,2.0mol时,浸出产物中Mg3B2O6杂质含量极少,产品纯度均超过98%。稀释剂可以降低颗粒尺寸,提高产物纯度。采用此种自蔓延高温燃烧合成法可以大规模制备超细TiB2粉体。  相似文献   

3.
在分析和综述大量文献以及多年研究工作的基础上,针对硼化钛和六硼化镧在制备方面存在的问题,提出了自蔓延冶金制备陶瓷粉末的方法.首次系统地研究了自蔓延冶金法制备TiB2的各个环节(SHS、浸出和表征),获得了优质的TiB2微粉.TiB2微粉的平均粒径达0.41μm,比表面积5.685m2/g,晶格常数a=3.033,c=3.230.在粒径、比表面积和纯度等性能方面均优于文献报导值.粒度分析表明,通过改变初始条件(稀释剂MgO、TiB2,压坯压力),可以改变TiB2颗粒分布.考察了然烧模式和热爆模式两种自蔓延过程;分别研究了预热温度、压坯致密性(或孔隙度)和稀释剂对SHS燃烧波传播速度、燃烧温度的影响.并测量了热爆模式的起爆温度.建立了宏观分层的动态模型.利用SEM和微区分析技术对SHS产物形貌和显微结构进行了分析和研究.提出了TiB2微粒在氧化镁颗粒间隙和在氧化镁颗粒内部生长的两种机制,该机制能很好地解释粒度分布出现的不连续性.采用同样的方法成功地合成了LaB6微粉,为稀土硼化物的制备找到了一个简便易行的新方法.从热力学和动力学的不同的角度研究了TiO2+B2O3+Mg和La2O3-B2O3+Mg间的反应过程.并确定了相应反应的动力学参数.  相似文献   

4.
TiB2-Cu基复合材料的燃烧合成研究   总被引:1,自引:0,他引:1  
通过燃烧合成工艺制备了TiB2-40%Cu(质量分数)基复合材料,对复合材料的反应热力学、相组成以及微观组织进行了研究。热力学计算结果表明TiB是最稳定的相,中间相Ti-Cu化合物最终转变为TiB2相;XRD结果显示复合材料的相组成为TiB2相和Cu相,没有生成其他中间相;微观组织观察表明,合成产物组织致密,增强体TiB2陶瓷颗粒尺寸细小,形貌主要呈近等轴状和块状,Cu作为金属粘结剂将TiB2陶瓷颗粒相互连接在一起,Cu的存在促进了燃烧合成过程中材料的致密化行为。Cu的加入使TiB2-Cu基复合材料的致密度、弯曲强度和断裂韧性较TiB2纯陶瓷均有大幅度提高,材料的韧化机制为裂纹尖端塑性钝化机制。  相似文献   

5.
利用多重射流氢氧焰燃烧反应器,通过控制进料方式,以TiCl4和SiCl4为原料合成了具有典型核壳结构的纳米TiO2/SiO2复合颗粒,并分析了氢氧焰燃烧合成过程中核壳结构的形成机理.在纳米TiO2/SiO2复合颗粒中,无定形的SiO2均匀地包覆在晶态TiO2颗粒表面形成核壳结构,引入SiO2不但有效抑制TiO2晶粒的生长,而且抑制了锐钛相向金红石相的转变.在TiCl4和SiCl4次序进料时,TiCl4优先反应并通过成核生长生成TiO2纳米颗粒,SiCl4反应生成的SiO2通过在TiO2颗粒表面非均相成核生长,形成核壳结构的纳米复合颗粒.  相似文献   

6.
燃烧合成ZnFe2O4的相转变与反应机制研究   总被引:2,自引:2,他引:0  
采用"气窒"法实现燃烧波的"淬熄",获得了燃烧合成Zn铁氧体粉体不同阶段的燃烧产物.采用XRD、SEM和mossbauer谱研究燃烧产物的相组成和微观结构的变化.提出了燃烧合成Zn铁氧体的溶解-析出机制,即铁粉在氧气中燃烧,被氧化成Fe2O3.在高温下,Fe和Fe2O3部分熔化成液相.高熔点的ZnO颗粒悬浮于液相中并逐渐溶解,最后Zn铁氧体逐渐从液相中析出.此外,结合上述分析,给出了燃烧合成Zn-Fe2O4的反应机制模型.  相似文献   

7.
燃烧合成法制备CaB6的研究   总被引:1,自引:0,他引:1  
以CaO、B2O3、Mg粉为原料燃烧合成制备了CaB6粉末.考察了不同反应体系的差热曲线,采用XRD、SEM以及粒度分析技术对燃烧产物、浸出产物进行了表征.结果表明:Mg-B2O3-CaO反应体系872℃附近放热峰的表观活化能E=15.71kJ·mol-1,反应级数n=1.1,反应的表观活化能很小,说明合成CaB6的反应容易发生.燃烧产物由MgO、CaB6以及少量的Mg3B2O6和Ca3B2O6等组成,在空气中进行燃烧合成反应并不生成氮化物;燃烧产物经硫酸浸出处理后CaB6纯度达92.5%;随着制样压力的增大,CaB6粒度逐渐变小.  相似文献   

8.
利用燃烧合成工艺原位合成了TiB2-Cu基复合材料,为了改善TiB2陶瓷和Cu基体的润湿性,将金属Ni作为合金化元素加入到TiB2-Cu复合材料。通过XRD,SEM,EPMA和TEM等检测手段对金属Ni的添加对TiB2-Cu基复合材料微观组织的影响进行了研究。结果表明,含Ni复合材料的金属粘结相的面间距比不含Ni时Cu的面间距均有不同程度的减小;Ni加入后,TiB2-Cu-Ni复合材料的组织较TiB2-Cu复合材料更加致密,但陶瓷颗粒尺寸却大于TiB2-Cu复合材料的颗粒尺寸;Ni的加入降低了复合材料的导热率和冷却速度,使得部分TiB2陶瓷颗粒有足够的时间长成棒状,同时造成TiB2陶瓷颗粒间形成更多的烧结颈;Ni的加入也改善了陶瓷与金属粘结相之间的润湿性,使陶瓷相与金属粘结相的界面结合牢固,看不到TiB2-Cu复合材料中界面脱开的现象。金属Ni的添加有利于改善TiB2-Cu基复合材料的微观组织,进而利于复合材料的致密化。  相似文献   

9.
20wt% SiO2/Al-Mg复合材料的界面反应及其微结构   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末冶金法制备了20wt%SiO2/Al-Mg复合材料。研究了SiO2和基体元素Al,Mg反应机制,研究表明:在原SiO2颗粒内,形成MgAl2O4,MgO,Mg2Si和少量Al和Si。MgAl2O4呈不规则形状,而且MgAl2O4往往和Al相邻;MgO和Mg2Si形成片层状共析体;经620℃烧结30min,SiO2被完全反应掉。反应生成物Si多数被排到Al基体中;原Al-Mg基体中主要物相为:Al,Mg2Si和Si,Mg2Si颗粒的尺寸小于0.2μm。原Al-Mg基体中,单质Mg已不存在,Mg反应形成Mg2Si。  相似文献   

10.
根据对Mg-B2O3-Ti O2体系的热力学计算结果,对反应的顺序做出初步判断;然后用Cu楔块燃烧波淬息法分析SHS反应各区域产物的组成及形貌变化,研究了晶体的合成和生长机理。热力学计算结果表明:在反应过程中首先由Mg还原B2O3得到B和Mg O,其次Mg还原Ti O2得到Ti和Mg O,最后B与Ti结合生成Ti B2。对于在反应过程中的中间产物,生成Ti3O5、Ti2O3、Ti O的可能性依次降低。实验结果表明:在燃烧中心由于反应较完全,没有产生中间产物;反应次中心和边缘的温度仍然较高,有少量的Ti2O3、Ti O;在燃烧底部因温度较低反应不完全,因而有少量的Ti3O5,实验结果与热力学分析结果吻合。在反应过程中Mg O先形核长大,部分Ti B2附着在Mg O上形核,随着温度的升高形成了细小的颗粒;部分Ti B2在粗大的Mg O之间独立形核,生长成典型的六角晶型;Ti B2的生长机理属于L-S机理,B和Ti交互富集生成了典型的六角晶型。  相似文献   

11.
TiB2-TiC复合粉的自蔓延高温还原合成   总被引:6,自引:3,他引:6       下载免费PDF全文
热分析结果表明,对于B2O3-TiO2-Mg-C体系,可利用SHS还原技术合成出TiB2-TiC陶瓷复合粉。其化学反应机理为:Mg先还原B2O3和TiO2,新生的Ti与B和C反应生成TiB2和TiC; TiO2的还原经历了TiO2→TiO→Ti的逐步过程。采用一定的酸洗工艺得到了纯净的TiB2-TiC陶瓷复合粉。复合粉中包含六方片状TiB2和圆球状TiC;复合粉中1μm以下颗粒质量百分数超过45%,87%以上的颗粒大小在3μm以下。在TiB2-TiC中,TiC<em>y以一种贫碳结构存在,物料中Ti被B或C结合形成TiB2和TiC<em>y,y的值为0.7483。  相似文献   

12.
张超  贺拥军  刘登卫 《纳米科技》2010,(6):41-43,49
以Pickering乳液液滴为模板,通过液滴表面水合作用制备出MgO/Mg(OH)_2复合空心球壳,通过SEM、XRD等手段进行表征,讨论了空心球壳形成机理,并研究了MgO/Mg(OH)_2复合空心球壳对阿维菌素微胶囊的缓释作用,结果表明,MgO/Mg(OH)_2复合空心球壳形貌完整,粒径分布均匀,平均粒径为62μm。水合过程中部分MgO转变成Mg(OH)_2,并优先复合在未反应的MgO粒子上,形成MgO/Mg(OH)_2复合空心球壳。以MgO/Mg(OH)_2复合空心球壳为壁材的阿维菌素微胶囊具有良好的缓释性能。  相似文献   

13.
采用自蔓延燃烧合成法在室温下的空气中制备出了TiB2/Al2O3复相陶瓷,通过X射线衍射(XRD)和扫描电镜(SEM)分析表明:大部分TiB2的形貌为规则的块状,晶粒细小,平均尺寸为几个μm,但也出现了TiB2枝晶和棒状晶。而Al2O3的颗粒较大(10~40μm左右),形状不规则,Al2O3的断口呈层片状,Al2O3和TiB2出现聚集现象。  相似文献   

14.
采用自蔓延燃烧合成法在室温下的空气中制备出了TiB2-Al2O3复相陶瓷,通过X射线衍射(XRD)和扫描电镜(SEM)分析表明,合成的产物纯净,无中间相,TiB2的形貌为规则的块状,晶粒细小,平均尺寸为(2~5 μm),弥散的分布在晶粒较大的Al2O3(40~50 μm)四周,而Al2O3的形状不是很规则.该反应不同于一般的元素直接合成,而是由熔化-还原-化合组成的三步反应过程构成.  相似文献   

15.
用XRD,SEM对原位自生法制备的Ti-50Al-xB(at%)合金的相组成和微观组织进行了研究。结果表明:该合金主要由TiAl和TiB2两相组成;TiB2主要以片状,极片状,细棒状和声状形式存在,TiB2微观形貌随着合金中B含量的变化而发生显著变化,当B含量由0.4at%增加至1.4at%时,TiB2的微观形貌由片状依次演变为板片状、细棒状直至块状,而基体形貌没有明显变化。根据TiB2晶体形核与生长条件对TiB形貌演变过程进行了分析。  相似文献   

16.
在熔融镁合金中加入SiO2颗粒,原位反应制备颗粒增强镁基复合材料。用SEM-EDX及衍射仪对制备的复合材料进行相分析。结果表明,SiO2颗粒与镁基复合材料中的镁发生反应,生成增强相Mg2Si,提高了镁基复合材料的硬度和强度,当SiO2加入量在8%范围内时,随着SiO2加入量的增加,镁合金的硬度和强度也相应的增加。  相似文献   

17.
用晶化的硅酸铝短纤维作增强体, 用磷酸铝作黏结剂制得预制体, 用AZ91D作基体金属, 通过挤压浸渗工艺制备镁基复合材料。通过光学显微分析、 XRD衍射分析、 SEM扫描分析等, 初步观察研究了硅酸铝短纤维增强镁基复合材料的界面反应规律和反应产物。结果表明: 用硅酸铝短纤维增强AZ91D镁合金通过浸渗挤压法制备镁基复合材料是可行的; 镁与磷酸铝黏结剂反应后在界面上生成一定数量的MgO颗粒和少量的MgAl2O4颗粒, 致使硅酸铝增强纤维和镁合金基体之间形成较强界面结合; 另外, 在硅酸铝短纤维的晶化处理过程中, 由于非晶态SiO2的析出, 导致Mg2Si脆性相在界面附近产生, 从而对该复合材料的力学性能产生一定影响。   相似文献   

18.
以B2O3、Nd2O3和Mg为原料, 采用燃烧合成法制备出NdB6超细粉体。考察了反应气氛、制样压力和物料配比对反应产物微观形貌和物相的影响。采用XRD、SEM对产物进行了表征, 结果表明: 燃烧产物由NdB6、MgO以及少量Mg3B2O6和Nd2B2O6组成, 稀硫酸处理去除可溶性成分后, 产物为单一的NdB6相, 纯度为99.1%。随着制样压力的增大, NdB6颗粒尺寸逐渐变小。制样压力为20 MPa时, 制备的NdB6粉末平均粒度小于500 nm。Mg-B2O3-Nd2O3三相反应历程: 首先Mg还原Nd2O3生成单质Nd和MgO, 然后引发Mg还原B2O3生成单质B和MgO, 同时生成的Nd和B反应得到NdB6, 反应的表观活化能为691.59 kJ/mol, 反应级数为3.2。  相似文献   

19.
TiB_2粉料的还原合成与酸洗纯化研究   总被引:1,自引:1,他引:0  
用SHS还原合成法合成了TiB2 混合粉料 ,并通过酸洗处理获得了高纯TiB2 粉料。研究了合成过程和酸洗条件对TiB2 纯度的影响 ,对合成粉料酸洗过程进行了热力学分析。试验结果表明 ,TiO2 B2 O3 Mg三元系统的化学反应由两部分组成 ,第一部分由金属Mg还原出B和Ti单体 ,第二部分由这两种单体化合反应生成TiB2 。TiB2 粉料的纯度主要取决于酸洗条件。提高盐酸浓度、增加酸过量和延长酸洗时间可以提高TiB2 粉料的纯度 ,而升高酸洗温度还可以大大加快酸洗速度。  相似文献   

20.
以球形镁铝合金(Al12Mg17)颗粒为原料, 在空气中直接燃烧合成氮化铝(AlN)晶体。实验样品堆积在直径为 1 cm的区域内, 使用乙烷火焰点燃。使用高速摄像仪记录燃烧合成过程。借助XRD和SEM对原料和产物的组成及结构进行分析, 并使用TG-DSC分析合金的热力学性质。结果表明: 镁铝合金中的铝可以全部转化为AlN晶体。合金的点火温度约为494.4 ℃, 一旦点燃, 不需要外界热源的持续加热, 样品可持续燃烧。燃烧开始后, 合金颗粒中镁快速汽化, 与空气中氧发生优先反应, 并耗掉颗粒周围的氧气, 使氮气进入液态铝表层, 生成氮化铝。燃烧产物有明显分层, 检测结果表明上层产物为白色氧化镁, 下层产物为黑色氮化铝晶体。合成过程中, 镁对氮化铝的形成起着积极的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号