首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to the mature brain, in which GABA is the major inhibitory neurotransmitter, in the developing brain GABA can be excitatory, leading to depolarization, increased cytoplasmic calcium, and action potentials. We find in developing hypothalamic neurons that glutamate can inhibit the excitatory actions of GABA, as revealed with fura-2 digital imaging and whole-cell recording in cultures and brain slices. Several mechanisms for the inhibitory role of glutamate were identified. Glutamate reduced the amplitude of the cytoplasmic calcium rise evoked by GABA, in part by activation of group II metabotropic glutamate receptors (mGluRs). Presynaptically, activation of the group III mGluRs caused a striking inhibition of GABA release in early stages of synapse formation. Similar inhibitory actions of the group III mGluR agonist L-AP4 on depolarizing GABA activity were found in developing hypothalamic, cortical, and spinal cord neurons in vitro, suggesting this may be a widespread mechanism of inhibition in neurons throughout the developing brain. Antagonists of group III mGluRs increased GABA activity, suggesting an ongoing spontaneous glutamate-mediated inhibition of excitatory GABA actions in developing neurons. Northern blots revealed that many mGluRs were expressed early in brain development, including times of synaptogenesis. Together these data suggest that in developing neurons glutamate can inhibit the excitatory actions of GABA at both presynaptic and postsynaptic sites, and this may be one set of mechanisms whereby the actions of two excitatory transmitters, GABA and glutamate, do not lead to runaway excitation in the developing brain. In addition to its independent excitatory role that has been the subject of much attention, our data suggest that glutamate may also play an inhibitory role in modulating the calcium-elevating actions of GABA that may affect neuronal migration, synapse formation, neurite outgrowth, and growth cone guidance during early brain development.  相似文献   

2.
Whereas GABA is a major inhibitory neurotransmitter in the adult central nervous system, recent experiments performed in our laboratory have shown that the activation of GABAA receptors in the hippocampus leads to excitatory effects during the early post-natal period. The possible consequence of a depolarizing effect of GABA was assessed on the neuritic outgrowth of embryonic hippocampal neurons in culture. No morphological alterations were observed when hippocampal neurons were cultured for three days in the presence of muscimol, a GABAA receptor agonist. In contrast, the neuritic outgrowth of cultured hippocampal neurons was profoundly affected by the presence of bicuculline in the culture medium. In the presence of this GABAA receptor antagonist neurons displayed a reduction in the number of primary neurites and branching points, resulting in a concomitant decrease of the total neuritic length. Thus, this study suggests that GABA, acting on GABAA subtype of receptors, is able to affect the development of the hippocampus.  相似文献   

3.
Patch-clamp recordings of CA1 interneurons and pyramidal cells were performed in hippocampal slices from kainate- or pilocarpine-treated rat models of temporal lobe epilepsy. We report that gamma-aminobutyric acid (GABA)ergic inhibition in pyramidal neurons is still functional in temporal lobe epilepsy because: (i) the frequency of spontaneous GABAergic currents is similar to that of control and (ii) focal electrical stimulation of interneurons evokes a hyperpolarization that prevents the generation of action potentials. In paired recordings of interneurons and pyramidal cells, synchronous interictal activities were recorded. Furthermore, large network-driven GABAergic inhibitory postsynaptic currents were present in pyramidal cells during interictal discharges. The duration of these interictal discharges was increased by the GABA type A antagonist bicuculline. We conclude that GABAergic inhibition is still present and functional in these experimental models and that the principal defect of inhibition does not lie in a complete disconnection of GABAergic interneurons from their glutamatergic inputs.  相似文献   

4.
A slow inhibitory potential (sIP) elicited upon synaptic activation in spiny, pyramidal-like cells with properties indicative of projection neurons was investigated in slices of the rat and guinea-pig lateral amygdala in vitro. The sIP succeeded the triphasic sequence of excitatory and fast/slow inhibitory postsynaptic potentials mediated via glutamate and GABA(A/B) receptors, respectively, was readily evoked upon repetitive stimulation of the external capsule and appeared to terminate epileptiform burst discharges during pharmacologically reduced GABAergic influence. The sIP reversed close to the Cl- equilibrium potential, but was not affected by altered transmembrane Cl- gradients and not abolished by antagonists to ligand-gated Cl- channels. Intracellular injection of QX 314 and resulting blockade of sodium spikes had no effect, whereas the Ca2+ chelator BAPTA blocked the sIP concomitantly with slow hyperpolarizing afterpotentials following intrinsically generated spike firing, thereby indicating the contribution of Ca2+-dependent mechanisms secondary to synaptic activation. During action of BAPTA and QX 314, an N-methyl-D-aspartate (NMDA) receptor-mediated potential was unmasked, which contributed to the sIP. The Ca2+-dependent mechanisms of the sIP involved a membrane K+ conductance, as was indicated by the dependence on the K+ gradient and the shift of the reversal potential towards the K+ equilibrium potential during blocked NMDA receptors. During the presence of GABA receptor antagonists, reduction of the Ca2+-activated K+ conductance through injection of BAPTA or application of dopamine induced a gradual shift of interictal-like single bursts of spikes towards the generation of re-occurring ictal-like activity. It is concluded that pyramidal-like projection cells in the AL can generate a sIP upon synaptic activation, which reflects the combined activation of an NMDA receptor-mediated cation current and a K+ current that is secondary to the rise in intracellular Ca2+ concentration resulting from the preceding depolarizing response. The sIP may play an important role in controlling excitatory activity in the amygdala, particularly in preventing the transformation of interictal-like activity towards recurrent epileptic discharges during periods of decreased GABAergic influence.  相似文献   

5.
Cannabinoid receptors (CNRs) in basal ganglia are located on striatal efferent neurons which are gamma-aminobutiric acid (GABA)-containing neurons. Recently, we have demonstrated that CN-induced motor inhibition is reversed by GABA-B, but not GABA-A, receptor antagonists, presumably indicating that the activation of CNRs in striatal outflow nuclei, mainly in the substantia nigra, should be followed by an increase of GABA concentrations into the synaptic cleft of GABA-B receptor synapses. The present study was designed to examine whether this was originated by increasing GABA synthesis and/or release or by decreasing GABA uptake. We analyzed: (i) GABA synthesis, by measuring the activity of glutamic acid decarboxylase (GAD) and GABA contents in brain regions that contain striatonigral GABAergic neurons, after in vivo administration of CNs and/or the CNR antagonist SR141716; (ii) [3H]GABA release in vitro in the presence or the absence of a synthetic CN agonist, HU-210, by using perifusion of small fragments of substantia nigra; and (iii) [3H]GABA uptake in vitro in the presence or the absence of WIN-55,212-2, by using synaptosomes obtained from either globus pallidus or substantia nigra. Results were as follows. Delta9-tetrahydrocannabinol (delta9-THC) and HU-210, did not alter neither GAD activity nor GABA contents in both the striatum and the ventral midbrain at any of the two times tested, thus suggesting that CNs apparently failed to change GABA synthesis in striatonigral GABAergic neurons. A similar lack of effect of HU-210 on in vitro [3H]GABA release, both basal and K+-evoked, was seen when this CN was added to perifused substantia nigra fragments, also suggesting no changes at the level of GABA release. However, when synaptosome preparations obtained from the substantia nigra were incubated in the presence of WIN-55,212-2, a decrease in [3H]GABA uptake could be measured. This lowering effect was specific of striatonigral GABAergic neurons since it was not observed in synaptosome preparations obtained from the globus pallidus. In summary, the activation of CNRs located on striatonigral GABAergic neurons, which primarily access to GABA-B receptor synapses, was accompanied by a reduction in neurotransmitter uptake, thus prolonging the presence of GABA into the synaptic cleft. This mechanism might underly the CN-induced motor inhibition through the potentiation of the inhibitory effect of GABA on neuronal activity, in particular of nigrostriatal dopaminergic neurons.  相似文献   

6.
A unilateral hemicastration decreased the serotonin and 5-hydroxyindolacetic acid levels in the Wistar rat mediobasal hypothalamus, but not in the midbrain. These neurotransmitters were shown to interact in the process of androgen restoration after the hemicastration. The maximal contribution of GABAergic mechanisms in the testosterone feedback regulation involves the GABA effect via the central GABA-A receptors of the mediobasal hypothalamus' serotoninergic neurons, thus activating the hormone level restoration. The GABA seems to induce a serotonin-independent inhibition of the testosterone level stabilising after hemicastration.  相似文献   

7.
The larger isoform of the enzyme glutamate decarboxylase, GAD67, synthesizes >90% of basal levels of gamma-aminobutyric acid (GABA) in the brain. In contrast, the smaller isoform, GAD65, has been implicated in the fine-tuning of inhibitory neurotransmission. Mice deficient in GAD65 exhibit increased anxiety-like responses in both the open field and elevated zero maze assays. Additionally, GAD65-deficient mice have a diminished response to the anxiolytics diazepam and pentobarbital, both of which interact with GABA-A receptors in a GABA-dependent fashion to facilitate GABAergic neurotransmission. Loss of GAD65-generated GABA does not appear to result in compensatory postsynaptic GABA-A receptor changes based on radioligand receptor binding studies, which revealed no change in the postsynaptic GABA-A receptor density. Furthermore, mutant and wild-type animals do not differ in their behavioral response to muscimol, which acts independently of the presence of GABA. We propose that stress-induced GABA release is impaired in GAD65-deficient mice, resulting in increased anxiety-like responses and a diminished response to the acute effects of drugs that facilitate the actions of released GABA.  相似文献   

8.
The potential influence of GABAergic input to cholinergic basalis neurons was studied in guinea-pig basal forebrain slices. GABA and its agonists were applied to electrophysiologically-identified cholinergic neurons, of which some were labelled with biocytin and confirmed to be choline acetyltransferase-immunoreactive. Immunohistochemistry for glutamate decarboxylase was also performed in some slices and revealed GABAergic varicosities in the vicinity of the biocytin-filled soma and dendrites of electrophysiologically-identified cholinergic cells. From rest (average - 63 mV), the cholinergic cells were depolarized by GABA. The depolarization was associated with a decrease in membrane resistance and diminution in firing. The effect was mimicked by muscimol, the specific agonist for GABA(A) receptors, and not by baclofen, the specific agonist for GABA(B) receptors, which had no discernible effect. The GABA- and muscimol-evoked depolarization and decrease in resistance were found to be postsynaptic since they persisted in the presence of solutions containing either high Mg2+/low Ca2+ or tetrodotoxin. They were confirmed as being mediated by a GABA(A) receptor, since they were antagonized by bicuculline. The reversal potential for the muscimol effect was estimated to be approximately -45 mV, which was -15 mV above the resting membrane potential. Finally, in some cholinergic cells, spontaneous subthreshold depolarizing synaptic potentials (average 5 mV in amplitude), which were rarely associated with action potentials, were recorded and found to persist in the presence of glutamate receptor antagonists but to be eliminated by bicuculline. These results suggest that GABAergic input may be depolarizing, yet predominantly inhibitory to cholinergic basalis neurons.  相似文献   

9.
Intracellular recordings were performed in area CA1 pyramidal cells of rat hippocampal slices to determine the effects of certain steroids on inhibitory postsynaptic potentials/currents (IPSP/Cs) mediated by GABA(A) receptors. Following application of the steroids 5alpha-pregnan-3alpha,21-diol-20-one (5alpha-THDOC), alphaxalone and 5beta-pregnan-3alpha-ol-20-one (pregnanolone) hyperpolarizing PSPs developed into biphasic responses consisting of an early hyperpolarizing and a late depolarizing PSP sequence. Steroid-induced depolarizing PSPs could be elicited in the presence of antagonists to non-NMDA, NMDA, and GABA(B) receptors, indicating that these receptor types do not contribute significantly to the initiation of these responses. Depolarizing PSPs were completely blocked by both GABA(A) receptor antagonists bicuculline and t-butylbicyclophosphorothionat (TBPS) providing evidence for their mediation by GABA(A) receptors. The reversal potential of steroid-induced late inward PSCs, measured in single-electrode voltage clamp, was -29.9+/-5.3 mV, whereas the early outward current, which corresponded to the early hyperpolarizing component of PSPs, reversed at -68.2+/-1.5 mV. Depolarizing PSPs and late inward PSCs were sensitive to reduction of extracellular [HCO3-] and block of carbonic anhydrase by application of acetazolamide. The results suggest that certain neuroactive steroids can induce GABA(A) receptor-mediated depolarizing PSPs, which are dependent on HCO3-.  相似文献   

10.
Using microcultured neurons and hippocampal slices, we found that under conditions that completely block AMPA receptors, kainate induces a reduction in the effectiveness of GABAergic synaptic inhibition. Evoked inhibitory postsynaptic currents (IPSCs) were decreased by kainate by up to 90%, showing a bell-shaped dose-response curve similar to that of native kainate-selective receptors. The down-regulation of GABAergic inhibition was not affected by antagonism of metabotropic receptors, while it was attenuated by CNQX. Kainate increased synaptic failures and reduced the frequency of miniature IPSCs, indicating a presynaptic locus of action. In vivo experiments using brain dialysis demonstrated that kainate reversibly abolished recurrent inhibition and induced an epileptic-like electroencephalogram (EEG) activity. These results indicate that kainate receptor activation down-regulates GABAergic inhibition by modulating the reliability of GABA synapses.  相似文献   

11.
GABAergic inhibition of hippocampal pyramidal cells is mediated by two distinct subtypes of postsynaptic receptors, GABAA and GABAB. Electrical stimulation of inhibitory cells or fibres in the CA1 subfield of the hippocampus yields a biphasic inhibitory postsynaptic potential (IPSP) in pyramidal cells, consisting of an early GABAA- and a late GABAB-mediated component. CA1 interneurons are a heterogeneous population of cells, which differ on the basis of their morphology, physiological properties, target selectivity onto principal cells, and network connectivity. Inhibitory synaptic circuitry appears to be specialized, since feedback inhibition may invoke only postsynaptic GABAA receptors, whereas feedforward inhibition may invoke both postsynaptic GABAA and GABAB receptors. In this review, we examine the evidence for and against the notion that distinct interneurons may be responsible for GABAA- and GABAB-mediated inhibition. Overall, the evidence suggests that (i) certain interneurons may generate solely GABAA inhibition, but the available data do not distinguish whether other interneurons mediate (ii) solely GABAB inhibition or (iii) a combination of both GABAA and GABAB.  相似文献   

12.
GABA (gamma-aminobutyric acid) is the main inhibitory transmitter in the adult brain, and it exerts its fast hyperpolarizing effect through activation of anion (predominantly Cl-)-permeant GABA(A) receptors. However, during early neuronal development, GABA(A)-receptor-mediated responses are often depolarizing, which may be a key factor in the control of several Ca2+-dependent developmental phenomena, including neuronal proliferation, migration and targeting. To date, however, the molecular mechanism underlying this shift in neuronal electrophysiological phenotype is unknown. Here we show that, in pyramidal neurons of the rat hippocampus, the ontogenetic change in GABA(A)-mediated responses from depolarizing to hyperpolarizing is coupled to a developmental induction of the expression of the neuronal (Cl-)-extruding K+/Cl- co-transporter, KCC2. Antisense oligonucleotide inhibition of KCC2 expression produces a marked positive shift in the reversal potential of GABAA responses in functionally mature hippocampal pyramidal neurons. These data support the conclusion that KCC2 is the main Cl- extruder to promote fast hyperpolarizing postsynaptic inhibition in the brain.  相似文献   

13.
Rapid information transfer within the brain depends on chemical signalling between neurons that is mediated primarily by glutamate and GABA (gamma-aminobutyric acid), acting at ionotropic receptors to cause excitatory or inhibitory postsynaptic potentials (EPSPs or IPSPs), respectively. In addition, synaptically released glutamate acts on metabotropic receptors to excite neurons on a slower timescale through second-messenger cascades, including phosphoinositide hydrolysisl. We now report a unique IPSP mediated by the activation of metabotropic glutamate receptors. In ventral midbrain dopamine neurons, activation of metabotropic glutamate receptors (mGluR1) mobilized calcium from caffeine/ryanodine-sensitive stores and increased an apamin-sensitive potassium conductance. The underlying potassium conductance and dependence on calcium stores set this IPSP apart from the slow IPSPs described so far. The mGluR-induced hyperpolarization was dependent on brief exposure to agonist, because prolonged application of exogenous agonist desensitized the hyperpolarization and caused the more commonly reported depolarization. The rapid rise and brief duration of synaptically released glutamate in the extracellular space can therefore mediate a rapid excitation through activation of ionotropic receptors, followed by inhibition through the mGluR1 receptor. Thus the idea that glutamate is solely an excitatory neurotransmitter must be replaced with a more complex view of its dual function in synaptic transmission.  相似文献   

14.
After the arrival of a presynaptic nerve impulse at an excitatory synapse in hippocampal neurons, the rate of neurotransmitter release increases rapidly and then returns to low levels with a biphasic decay. The two kinetically distinct components are differentially affected when Sr2+ is substituted for Ca2+ ions. Our findings are comparable to those of the classical studies for the frog neuromuscular junction, and thus the basic aspects of Ca(2+)-activated transmitter release machinery appear to be conserved in central synapses. The method we have used, in addition, permits us to estimate the average neurotransmitter release rate for a single bouton. The observation of differential Ca2+/Sr2+ sensitivity is consistent with a release mechanism mediated by two Ca2+ sensors with distinct Ca2+ affinities: the low-affinity Ca2+ sensor facilitates the fast synchronous phase of release, whereas the high-affinity sensor sustains the slow asynchronous phase of release.  相似文献   

15.
The neuronal and synaptic organisation of the cerebral cortex appears exceedingly complex, and the definition of a basic cortical circuit in terms of defined classes of cells and connections is necessary to facilitate progress of its analysis. During the last two decades quantitative studies of the synaptic connectivity of identified cortical neurones and their molecular dissection revealed a number of general rules that apply to all areas of cortex. In this review, first the precise location of postsynaptic GABA and glutamate receptors is examined at cortical synapses, in order to define the site of synaptic interactions. It is argued that, due to the exclusion of G protein-coupled receptors from the postsynaptic density, the presence of extrasynaptic receptors and the molecular compartmentalisation of the postsynaptic membrane, the synapse should include membrane areas beyond the membrane specialisation. Subsequently, the following organisational principles are examined: 1. The cerebral cortex consists of: (i) a large population of principal neurones reciprocally connected to the thalamus and to each other via axon collaterals releasing excitatory amino acids, and, (ii) a smaller population of mainly local circuit GABAergic neurones. 2. Differential reciprocal connections are also formed amongst GABAergic neurones. 3. All extrinsic and intracortical glutamatergic pathways terminate on both the principal and the GABAergic neurones, differentially weighted according to the pathway. 4. Synapses of multiple sets of glutamatergic and GABAergic afferents subdivide the surface of cortical neurones and are often co-aligned on the dendritic domain. 5. A unique feature of the cortex is the GABAergic axo-axonic cell, influencing principal cells through GABAA receptors at synapses located exclusively on the axon initial segment. The analysis of these salient features of connectivity has revealed a remarkably selective array of connections, yet a highly adaptable design of the basic circuit emerges when comparisons are made between cortical areas or layers. The basic circuit is most obvious in the hippocampus where a relatively homogeneous set of spatially aligned principal cells allows an easy visualization of the organisational rules. Those principles which have been examined in the isocortex proved to be identical or very similar. In the isocortex, the basic circuit, scaled to specific requirements, is repeated in each layer. As multiple sets of output neurones evolved, requiring subtly different needs for their inputs, the basic circuit may be superimposed several times in the same layer. Tangential intralaminar connections in both the hippocampus and isocortex also connect output neurones with similar properties, as best seen in the patchy connections in the isocortex. The additional radial superposition of several laminae of distinct sets of output neurones, each representing and supported by its basic circuit, requires a co-ordination of their activity that is mediated by highly selective interlaminar connections, involving both the GABAergic and the excitatory amino acid releasing neurones. The remarkable specificity in the geometry of cells and the selectivity in placement of neurotransmitter receptors and synapses on their surface, strongly suggest a predominant role for time in the coding of information, but this does not exclude an important role also for the rate of action potential discharge in cortical representation of information.  相似文献   

16.
1. Topiramate is a structurally novel anticonvulsant which was recently approved for adjunctive therapy in partial and secondarily generalized seizures. The present study was aimed at elucidating the mechanisms underlying the anticonvulsant efficacy of topiramate using intra- and extracellular recording techniques in the in vitro hippocampal slices. 2. When stimuli were delivered every 20 s, topiramate had no measurable effect on both field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs). However, increasing the stimulation frequency from 0.05-0.2 Hz, topiramate significantly decreased the slope of fEPSP and the amplitude of PS in a concentration-dependent manner. The amplitude of presynaptic fiber volley was also reduced. 3. Topiramate did not affect the magnitude of paired-pulse inhibition and monosynaptically evoked inhibitory postsynaptic potentials (IPSPs). 4. Sustained repetitive firing was elicited by injection of long duration (500 ms) depolarizing current pulses (500-800 pA). Superfusion with topiramate significantly reduced the number of action potentials evoked by a given current pulse. 5. After blockade of GABA receptors by bicuculline, burst firing which consisted of a train of several spikes riding on a large depolarizing wave termed paroxysmal depolarizing shift (PDS) was recorded. Application of topiramate reduced the duration of PDS and later spikes with less effect on the initial action potential. 6. These results suggest that frequency-dependent inhibition of neuronal activity due to blockade of Na+ channels may account largely for the anticonvulsant efficacy of topiramate.  相似文献   

17.
Rhythmic spontaneous bursting is a fundamental hallmark of the immature hippocampal activity recorded in vitro. These bursts or giant depolarizing potentials (GDPs) are GABA- and glutamatergic-driven events. The mechanisms of GDPs generation are still controversial, since although a hilar origin has been suggested, GDPs were also recorded from isolated CA3 area. Here, we have investigated the origin of GDPs in hippocampal slices from newborn rabbits. Simultaneous intracellular recordings were performed in CA3, CA1 and the fascia dentata. We found a high degree of correlation between the spontaneous GDPs present in CA3 and CA1 regions. Cross-correlation analysis demonstrated that CA3 firing precedes CA1 by about 192 ms, although a significant population of discharges was recorded first in CA1 (20%). Granule cells (GCs) in the fascia dentata also showed GDPs. The frequency of these events (1.46 +/- 1.25 GDPs/min, n = 7) is significantly lower when compared with that from CA3 (3.13 +/- 1.43 GDPs/min, n = 10) or CA1 (2.94 +/- 1.36 GDPs/min, n = 17). Dual recordings from CA3 and fascia dentata cells showed synchronous bursts in both regions with no prevalent preceding area. By recording from isolated areas we found that CA1, CA3 and the fascia dentata can produce GDPs, suggesting that they emerge as a property of local circuits present throughout the hippocampus.  相似文献   

18.
A transporter thought to mediate accumulation of GABA into synaptic vesicles has recently been cloned (McIntire et al., 1997). This vesicular GABA transporter (VGAT), the first vesicular amino acid transporter to be molecularly identified, differs in structure from previously cloned vesicular neurotransmitter transporters and defines a novel gene family. Here we use antibodies specific for N- and C-terminal epitopes of VGAT to localize the protein in the rat CNS. VGAT is highly concentrated in the nerve endings of GABAergic neurons in the brain and spinal cord but also in glycinergic nerve endings. In contrast, hippocampal mossy fiber boutons, which although glutamatergic are known to contain GABA, lack VGAT immunoreactivity. Post-embedding immunogold quantification shows that the protein specifically associates with synaptic vesicles. Triple labeling for VGAT, GABA, and glycine in the lateral oliva superior revealed a higher expression of VGAT in nerve endings rich in GABA, with or without glycine, than in others rich in glycine only. Although the great majority of nerve terminals containing GABA or glycine are immunopositive for VGAT, subpopulations of nerve endings rich in GABA or glycine appear to lack the protein. Additional vesicular transporters or alternative modes of release may therefore contribute to the inhibitory neurotransmission mediated by these two amino acids.  相似文献   

19.
The main criteria asked to a GABAergic synapse, have been fulfilled by GABA at the recepto-neural junction of the sensory periphery of vestibular organs in vertebrates. These criteria include the demonstration of its precursor, its synthesizing and degrading (inactivating) mechanisms and their localization with the right polarity of a GABAergic synapse. A novel GABA depolarizing action with particular pharmacological characteristics and expression of subunits of GABA receptors of the synaptic type (GABAA, GABAB or a putative mixed GABAA-GABAC) that could account for these properties are discussed.  相似文献   

20.
In neonatal hippocampal slices, recurrent spontaneous giant depolarizing potentials (GDPs) provide neuronal synchronized firing and Ca2+ oscillations. To investigate the possible role of GDPs in the synchronization of neuronal activity in intact neonatal limbic structures, we used multiple simultaneous electrophysiological recordings in the recently described preparation of intact neonatal septohippocampal complex in vitro. Combined whole-cell (in single or pairs of cells) and extracellular field recordings (one to five simultaneous recording sites) from the CA3 hippocampal region and various parts of the septum indicated that spontaneous GDPs, which can be initiated anywhere along the longitudinal hippocampal axis, are most often initiated in the septal poles of hippocampus and propagate to medial septum and temporal poles of both hippocampi simultaneously. GDPs were abolished in the medial septum but not in the hippocampus after surgical separation of both structures, suggesting hippocampal origin of GDPs. The preferential septotemporal orientation of GDP propagation observed in the intact hippocampus was associated with a corresponding gradient of GDP frequency in isolated portions of hippocampus. Accordingly, most GDPs propagated in the septotemporal direction in both septal and temporal hippocampal isolated halves, and whereas GDP frequency remained similar in the septal part of hippocampus after its surgical isolation, it progressively decreased in more temporally isolated portions of the hippocampus. Because GDPs provide most of the synaptic drive of neonatal neurons, they may modulate the development of neuronal connections in the immature limbic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号