首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
丝状菌污泥膨胀是影响活性污泥法高效、稳定运行的重要因素。采用A/O生物除磷工艺中试装置处理实际生活污水,分析了污泥膨胀发生的原因及恢复系统性能的方法。结果显示,长期曝气不均匀是导致丝状菌污泥膨胀的重要原因,通过调控系统运行参数可以有效控制由低DO值或者高负荷引起的丝状菌污泥膨胀。当发生污泥膨胀后,首先降低负荷至0.45 kgCOD/(kgMLSS.d),调节回流比为83%,同时控制好氧池各段的DO分别为1.5、1.0、1.0 mg/L以淘汰丝状菌,在SVI值降至200 mL/g以下后继续降低回流比至53%,同时降低曝气量以形成1.0、0.5、0.5 mg/L的DO浓度梯度。采取上述调控措施后,SVI值由569.8 mL/g降至150 mL/g以下,污泥性状得以恢复;同时出水COD和TP分别在50、0.5 mg/L以下,去除率分别约为85%、95%。  相似文献   

2.
结合崇明城桥污水处理厂的实际运行情况,对低负荷A/O工艺的运行模式进行分析.在进水BOD_5浓度仅为设计值32%的条件下,运行中MISS降至2 700 mg/L,采用连续进水、间歇曝气(曝气3 h、停曝5 h)的运行模式,污泥负荷达到0.159 kgBOD_5/(kgMLSS·d).2008年的实际运行结果表明,污泥SVI值为70~90 mL/g,出水COD、BOD5、SS、NH_3 -N和TP浓度分别为34.5、3.48、13、9.0和0.84 mg/L,优于<城镇污水处理厂污染物排放标准>(GB 18918--2002)的一级B标准,COD和BOD_5指标甚至优于一级A标准,综合处理电耗仅为0.13 kW·h/m~3.  相似文献   

3.
西北某城市污水处理厂提标改造工程,在不新建反应池、不改变主体结构的前提下,在好氧池中改造出第二缺氧区,拆除好氧池中微孔曝气管,改为微孔曝气盘,提高了好氧池的曝气充氧效率。好氧池中污泥浓度控制在6 000 mg/L,污泥外回流比为200%左右,内回流为100%左右,运行稳定,出水COD、氨氮、TN和TP等指标由《污水综合排放标准》(GB 8978—1996)的一级标准提升到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标准。  相似文献   

4.
构建以厌氧/好氧/缺氧/快速曝气单元组成的短程硝化同步反硝化除磷工艺,并在常温、低氧条件下用于处理实际城市污水。结果表明,设定水力停留时间(HRT)为9 h,污泥龄为20~25 d,污泥浓度(MLSS)为2 000~4 000 mg/L,且控制好氧1池的溶解氧(DO)浓度为1. 5~2mg/L,好氧2池的DO为0. 5~1 mg/L,并投加氢氧化钠溶液调控好氧池的pH值在8. 5以上,可以实现短程硝化反硝化的快速启动,且出现了反硝化除磷现象,出水水质可达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标准。  相似文献   

5.
新型短程硝化同步反硝化除磷工艺由厌氧(An)、好氧(O1,O2)、缺氧(A1,A2)、快速曝气(O3) 4个单元组成,在常温条件下可用于处理实际城市污水。在正常运行期间,不用控制进水p H值,且控制好氧1池的溶解氧(DO)浓度为1. 5~2 mg/L、好氧2池的DO浓度为0. 5~1 mg/L时,好氧2池出水亚硝酸盐浓度可以控制在5 mg/L以上,当水力停留时间(HRT)为9 h时,系统对氨氮、COD、总氮和磷酸盐的去除率分别为84. 27%、82. 31%、83. 82%和87. 41%,且出水水质达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。  相似文献   

6.
采用电解/水解酸化/好氧活性污泥工艺处理高浓度、难降解的医药生产废水,着重考察了HRT、温度、pH、溶解氧及污泥负荷对好氧段处理效果的影响.结果表明,电解/水解酸化提高了废水的可生化性,在HRT为18 h、温度为24℃、pH值为6.5~7.0、溶解氧为2.5 mg/L以及污泥负荷为0.42~0.50 kgCOD/(kgMLSS·d)的条件下,好氧段对COD的去除效果较好,去除率基本稳定在90%左右,出水水质满足<污水综合排放标准>(GB 8978-1996)的二级标准.  相似文献   

7.
城市污水处理厂污泥浓缩池上清液和脱水机滤液重新回流入污水处理系统会增加系统的磷负荷。针对污水处理厂剩余污泥浓缩过程中浓缩时间、投加聚合氯化铝(PAC)以及曝气对磷释放的影响进行了研究。结果表明,污泥浓缩池中的剩余污泥静置4 h后,释磷速率显著加快。在污泥浓缩池投加0.1 g/g干泥的PAC不仅将快速释磷时间延迟至8 h,还可以显著降低上清液中的磷酸盐浓度。对污泥浓缩池曝气30 min且溶解氧达到3 mg/L以上时,上清液中磷酸盐浓度降低了77.7%。通过合理控制剩余污泥在浓缩池中的停留时间、投加PAC以及曝气等,可以降低浓缩池上清液磷浓度,有效提高系统的除磷效果。  相似文献   

8.
将基于耗氧速率(OUR)气量计算模型和基于进水氨氮负荷DO预测模型相结合的曝气控制系统应用于武汉某污水厂,通过现场应用考察了曝气控制系统运行的稳定性和节能效果。实际运行结果表明,曝气控制系统可以根据进水氨氮负荷合理设定DO值,并根据OUR和DO值计算好氧池的最佳需氧量,将实际DO值控制在设定值±0.315mg/L范围内;同时曝气控制系统可以保证出水COD和NH_3-N满足《城镇污水处理厂污染物排放标准》一级A要求;曝气控制系统可以将鼓风机处理单位体积水的电耗降低21.9%。  相似文献   

9.
由于污水处理厂出水氨氮不能稳定达标,因此需对好氧池进行改造.根据工艺实际运行情况,适当提高活性污泥浓度(将污泥浓度由原来的4000 mg/L提高到4300 mg/L),不增加填料,改造曝气系统,增加曝气量,出水氨氮及其他指标均能稳定达标.  相似文献   

10.
A/A/MBBR工艺处理混合污水的脱氮除磷中试研究   总被引:3,自引:2,他引:1  
采用A/A/MBBR工艺处理由粪便液和生活污水组成的混合污水,试验条件:填料投配比为20%,好氧池1和好氧池2中的填料体积比为1:3,好氧池的水力停留时间为5 h,混合液回流比为120%,污泥回流比为60%,泥龄为6 d,好氧池的溶解氧为3.0 mg/L,温度为16~20℃.系统稳定运行一个月的结果表明:脱氮除磷效果及对有机物的去除效果均稳定而良好,出水氨氮、总氮、总磷和COD平均浓度分别为0.3、12.9、0.35和36.22 mg/L,均达到了国家一级A排放标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号