首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

2.
The insulin receptor, as a consequence of ligand binding, undergoes autophosphorylation of critical tyrosyl residues within the cytoplasmic portion of its beta-subunit. The 85 kDa regulatory subunit of phosphatidylinositol (PI) 3-kinase (p85), an SH2 domain protein, has been implicated as a regulatory molecule in the insulin signal transduction pathway. For the present study, glutathione S-transferase (GST) fusion proteins of p85 SH2 domains were used to determine if such motifs associate directly with the autophosphorylated human insulin receptor. The p85 N + C (amino plus carboxyl) SH2 domains were demonstrated to associate with the autophosphorylated beta-subunit, while neither the GTPase activator protein (GAP) N SH2 domain nor the phospholipase C-gamma 1 (PLC gamma 1) N + C SH2 domains exhibited measurable affinity for the activated receptor. The p85 N SH2 domain demonstrated weak association with the insulin receptor, while the p85 C SH2 domain alone formed no detectable complexes with the insulin receptor. The association of p85 N + C SH2 domains with the autophosphorylated receptor was competed efficiently by a 15-residue tyrosine-phosphorylated peptide corresponding to the carboxyl-terminal region of the insulin receptor, but not by phosphopeptides of similar length derived from the juxtamembrane or regulatory regions. The insulin receptor C domain phosphopeptide inhibited the p85 N + C SH2 domain-insulin receptor complex with an IC0.5 of 2.3 +/- 0.35 microM, whereas a 10-residue phosphopeptide derived from the insulin receptor substrate 1 (IRS-1) competed with an IC0.5 of 0.54 +/- 0.10 microM. These results demonstrate that, in vitro, there is an association between the p85 regulatory protein and the carboxyl-terminal region of the activated insulin receptor that requires the presence of both the N and C SH2 domains. Furthermore, formation of the p85/insulin receptor complex may lead to signaling pathways independent of IRS-1.  相似文献   

3.
The interactions of the N-terminal src homology (SH2) domain (N-SH2) of the 85 kDa subunit of phosphatidylinositol 3'-kinase (PI-3K) with phosphotyrosine (ptyr) and a series of ptyr-containing peptides have been examined by NMR spectroscopy. HSQC (heteronuclear single-quantum coherence) NMR spectra of 15N-labeled SH2 were used to evaluate its interactions with ptyr-containing ligands. The ability of ligands to cause chemical shift changes was compared to their potency as competitors in in vitro binding experiments using polyoma virus middle T antigen (MT). The results suggest the interdependence of SH2 binding elements. Chemical shifts of residues involved in the ptyr binding were altered by variations of the sequence of the bound peptide, suggesting that the ptyr fit can be adjusted by the peptide sequence. Perturbations of chemical shifts of residues coordinating the methionine three residues C-terminal to the ptyr (the +3 residue) were affected by substitution in the binding peptide at +1 and vice versa. Such results show synergistic interplay between regions of the SH2 binding residues C-terminal to the ptyr.  相似文献   

4.
Insulin binds to the alpha subunit of the insulin receptor which activates the tyrosine kinase in the beta subunit and tyrosine-phosphorylates the insulin receptor substrates-1 (IRS-1). Insulin promotes the formation of a complex between tyrosine-phosphorylated IRS-1 and several proteins including phosphoinositide(PI) 3-kinase, a heterodimer consisting of regulatory 85-kDa (p85) and catalytic 110-kDa (p110) subunits, GRB2 and Syp via the Src homology region 2 (SH2) domains. Recently, it was suggested that GRB2-Sos complex binding to IRS-1 was linked to Ras activation and that PI 3-kinase binding to IRS-1 was linked to activation of glucose transport. Since the mechanism of insulin-stimulated glucose uptake is mainly due to translocation of glucose transporters from an intracellular vesicle pool to the plasma membrane, PI 3-kinase activity may be involved in vesicle transport in mammalian cells.  相似文献   

5.
We screened a Xenopus laevis oocyte cDNA expression library with a Src homology 3 (SH3) class II peptide ligand and identified a 1270-amino acid-long protein containing two Eps15 homology (EH) domains, a central coiled-coil region, and five SH3 domains. We named this protein Intersectin, because it potentially brings together EH and SH3 domain-binding proteins into a macromolecular complex. The ligand preference of the EH domains were deduced to be asparajine-proline-phenylalanine (NPF) or cyclized NPF (CX1-2NPFXXC), depending on the type of phage-displayed combinatorial peptide library used. Screens of a mouse embryo cDNA library with the EH domains of Intersectin yielded clones for the Rev-associated binding/Rev-interacting protein (RAB/Rip) and two novel proteins, which we named Intersectin-binding proteins (Ibps) 1 and 2. All three proteins contain internal and C-terminal NPF peptide sequences, and Ibp1 and Ibp2 also contain putative clathrin-binding sites. Deletion of the C-terminal sequence, NPFL-COOH, from RAB/Rip eliminated EH domain binding, whereas fusion of the same peptide sequence to glutathione S-transferase generated strong binding to the EH domains of Intersectin. Several experiments support the conclusion that the free carboxylate group contributes to binding of the NPFL motif at the C terminus of RAB/Rip to the EH domains of Intersectin. Finally, affinity selection experiments with the SH3 domains of Intersectin identified two endocytic proteins, dynamin and synaptojanin, as potential interacting proteins. We propose that Intersectin is a component of the endocytic machinery.  相似文献   

6.
Heterodimeric class IA phosphoinositide 3-kinase (PI 3-kinase) plays a crucial role in a variety of cellular signalling events downstream of a number of cell-surface receptor tyrosine kinases. Activation of the enzyme is effected in part by the binding of two Src homology-2 domains (SH2) of the 85 kDa regulatory subunit to specific phosphotyrosine-containing peptide motifs within activated cytoplasmic receptor domains. The solution structure of the uncomplexed C-terminal SH2 (C-SH2) domain of the p85 alpha subunit of PI 3-kinase has been determined by means of multinuclear, double and triple-resonance NMR experiments and restrained molecular-dynamics simulated-annealing calculations. The solution structure clearly indicates that the uncomplexed C-SH2 domain conforms to the consensus polypeptide fold exhibited by other SH2 domains, with an additional short helical element at the N terminus. In particular, the C-SH2 structure is very similar to both the p85 alpha N-terminal SH2 domain (N-SH2) and the Src SH2 domain with a root mean square difference (rmsd) for 44 C alpha atoms of 1.09 and 0.89 A, respectively. The canonical BC, EF and BG loops are less well-defined by the experimental restraints and show greater variability in the ensemble of C-SH2 conformers. The lower level of definition in these regions may reflect the presence of conformational disorder, an interpretation supported by the absence or broadening of backbone and side-chain NMR resonances for some of these residues. NMR experiments were performed, where C-SH2 was titrated with phosphotyrosine-containing peptides corresponding to p85 alpha recognition sites in the cytoplasmic domain of the platelet-derived growth-factor receptor. The ligand-induced chemical-shift perturbations indicate the amino-acid residues in C-SH2 involved in peptide recognition follow the pattern predicted from homologous complexes. A series of C-SH2 mutants was generated and tested for phosphotyrosine peptide binding by surface plasmon resonance. Mutation of the invariant Arg36 (beta B5) to Met completely abolishes phosphopeptide binding. Mutation of each of Ser38, Ser39 or Lys40 in the BC loop to Ala reduces the affinity of C-SH2 for a cognate phosphopeptide, as does mutation of His93 (BG5) to Asn. These effects are consistent with the involvement of the BC loop and BG loops regions in ligation of phosphopeptide ligands. Mutation of Cys57 (beta D5) in C-SH2 to Ile, the corresponding residue type in the p85 alpha N-SH2 domain, results in a change in peptide binding selectivity of C-SH2 towards that demonstrated by p85 alpha N-SH2. This pattern of p85 alpha phosphopeptide binding specificity is interpreted in terms of a model of the p85 alpha/PDGF-receptor interaction.  相似文献   

7.
We compared the interaction between the insulin receptor (IR) and the IR substrate (IRS) proteins IRS-1 and IRS-2) using the yeast two-hybrid system. Both IRS proteins interact specifically with the cytoplasmic portion of the IR and the related insulin-like growth factor-I receptor, and these interactions require receptor tyrosine kinase activity. Alignment of IRS-1 and IRS-2 revealed two conserved domains at the NH2 terminus, called IH1PH and IH2PTB, which resemble a pleckstrin homology (PH) domain and a phosphotyrosine binding (PTB) domain, respectively. The IH2PTB binds to the phosphorylated NPXY motif (Tyr-960) in the activated insulin receptor, providing a specific mechanism for the interaction between the receptor and IRS-1. Although the IH2PTB of IRS-2 also interacts with the NPEY motif of the insulin receptor, it is not essential for the interaction between the insulin receptor and IRS-2 in the yeast two-hybrid system. IRS-2 contains another interaction domain between residues 591 and 786, which is absent in IRS-1. This IRS-2-specific domain is independent of the IH2PTB and does not require the NPEY motif; however, it requires a functional insulin receptor kinase and the presence of three tyrosine phosphorylation sites in the regulatory loop (Tyr-1146, Tyr-1150, and Tyr-1151). Importantly, this novel domain mediates the association between IRS-2 and insulin receptor lacking the NPXY motif and may provide a mechanism by which the stoichiometry of regulatory loop autophosphorylation enhances IRS-2 phosphorylation.  相似文献   

8.
We have identified a homozygous mutation near the carboxyl terminus of the insulin receptor (IR) alpha subunit from a leprechaun patient, changing Asp707 into Ala. Fibroblasts from this patient had no high affinity insulin binding sites. To examine the effect of the mutation on IR properties, the mutant IR was stably expressed in Chinese hamster ovary cells. Western blot analysis and metabolic labeling showed a normal processing of the mutant receptor to alpha and beta subunits. No increase in high affinity insulin binding sites was observed on Chinese hamster ovary cells expressing the mutant receptor, and also, affinity cross-linking of 125I-labeled insulin by disuccinimidyl suberate to these cells failed to label the mutant alpha subunit. Biotinylation of cell surface proteins by biotin succinimidyl ester resulted in efficient biotinylation of the mutant IR alpha and beta subunits, showing its presence on the cell surface. On solubilization of the mutant insulin receptor in Triton X-100-containing buffers, 125I-insulin was efficiently cross-linked to the receptor alpha subunit by disuccinimidyl suberate. These studies demonstrate that Ala707 IR is normally processed and transported to the cell surface and that the mutation distorts the insulin binding site. Detergent restores this site. This is an example of a naturally occurring mutation in the insulin receptor that affects insulin binding without affecting receptor transport and processing. This mutation points to a major contribution of the alpha subunit carboxyl terminus to insulin binding.  相似文献   

9.
Purified amino-terminal Src homology 2 (SH2) domains of GAP, PLCgamma1 and the p85alpha subunit of PI 3-kinase, as well as the carboxy-terminal SH2 domain of the latter protein and the unique SH2 domain of Grb2, were injected into full grown, stage VI Xenopus laevis oocytes. None of the injected domains showed any effect when injected alone, nor did they affect the rate of GVBD induced by progesterone, an adenylate cyclase-dependent process. On the other hand, the unique Grb2 SH2 domain and all N-terminal SH2 domains injected inhibited to various degrees the rate of insulin-induced GVBD, a tyrosine kinase dependent pathway. Interestingly, and in contrast to the behavior shown by the N-terminal domain of the same molecule, the C-terminal SH2 domain of p85 did not inhibit, but slightly accelerated the rate of GVBD induced by insulin. Furthermore, whereas the Grb SH2 domain and all N-terminal SH2 domains tested failed to co-operate with normal Ras protein to induce GVBD, the C-terminal SH2 domain of p85alpha exhibited significant synergy when coinjected with normal Ras protein, indicating that the C- and N-terminal SH2 domains of p85alpha exert opposite (positive and negative, respectively) regulatory roles in the control of oocyte insulin/Ras signaling pathways. Our results demonstrate that the purified, isolated SH2 domains retain structural and functional specificity and that Xenopus oocytes constitute an useful biological system to analyse their functional role in tyrosine kinase signaling pathways.  相似文献   

10.
SH2 domain proteins transmit intracellular signals initiated by activated tyrosine kinase-linked receptors. Recent three-dimensional structures suggest mechanisms by which tandem SH2 domains might confer higher specificity than individual SH2 domains. To test this, binding studies were conducted with tandem domains from the five signaling enzymes: phosphatidylinositol 3-kinase p85, ZAP-70, Syk, SHP-2, and phospholipase C-gamma1. Bisphosphorylated TAMs (tyrosine-based activation motifs) were derived from biologically relevant sites in platelet-derived growth factor, T cell, B cell, and high affinity IgE receptors and the receptor substrates IRS-1 (insulin receptor substrate-1) and SHPS-1/SIRP. Each tandem SH2 domain binds a distinct TAM corresponding to its appropriate biological partner with highest affinity (0.5-3.0 nM). Alternative TAMs bind the tandem SH2 domains with 1,000- to >10,000-fold lower affinity than biologically relevant TAMs. This level of specificity is significantly greater than the approximately 20-50-fold typically seen for individual SH2 domains. We conclude that high biological specificity is conferred by the simultaneous interaction of two SH2 domains in a signaling enzyme with bisphosphorylated TAMs in activated receptors and substrates.  相似文献   

11.
Two T cell-specific src-family tyrosine kinases, p56 lck (lck) and p59 fyn (fyn), are implicated in regulating PI 3-kinase activity in response to interleukin-2 (IL-2), a cytokine that induces T cell proliferation. The src- homology domains 3 (SH3) of src-family kinases can directly interact with the PI 3-kinase regulatory subunit p85 and this may be a mechanism to regulate PI 3-kinase activity. In order to understand the mode of PI 3-kinase activation by the IL-2 receptor, we examined the association of PI 3-kinase to SH2 and SH3 domains of lck and fyn in IL-2-dependent kit 225 cells. The fyn SH3 domain bound more PI 3-kinase and its p85 subunit than the lck SH3 domain, while the lck SH2 domain bound more PI 3-kinase than the fyn SH2 domain. None of these interactions were regulated by IL-2. Low binding of PI 3-kinase to the lck SH3 domain was not observed in IL-2-independent Jurkat T cells. Thus, SH3 and SH2 domains of lck and fyn bound different amounts of PI 3-kinase, a feature that was dependent on a T cell type, but was not influenced by IL-2.  相似文献   

12.
We propose a novel model for the regulation of the p85/pl10alpha phosphatidylinositol 3'-kinase. In insect cells, the p110alpha catalytic subunit is active as a monomer but its activity is decreased by coexpression with the p85 regulatory subunit. Similarly, the lipid kinase activity of recombinant glutathione S-transferase (GST)-p110alpha is reduced by 65 to 85% upon in vitro reconstitution with p85. Incubation of p110alpha/p85 dimers with phosphotyrosyl peptides restored activity, but only to the level of monomeric p110alpha. These data show that the binding of phosphoproteins to the SH2 domains of p85 activates the p85/p110alpha dimers by inducing a transition from an inhibited to a disinhibited state. In contrast, monomeric p110 had little activity in HEK 293T cells, and its activity was increased 15- to 20-fold by coexpression with p85. However, this apparent requirement for p85 was eliminated by the addition of a bulky tag to the N terminus of p110alpha or by the growth of the HEK 293T cells at 30 degrees C. These nonspecific interventions mimicked the effects of p85 on p110alpha, suggesting that the regulatory subunit acts by stabilizing the overall conformation of the catalytic subunit rather than by inducing a specific activated conformation. This stabilization was directly demonstrated in metabolically labeled HEK 293T cells, in which p85 increased the half-life of p110. Furthermore, p85 protected p110 from thermal inactivation in vitro. Importantly, when we examined the effect of p85 on GST-p110alpha in mammalian cells at 30 degrees C, culture conditions that stabilize the catalytic subunit and that are similar to the conditions used for insect cells, we found that p85 inhibited p110alpha. Thus, we have experimentally distinguished two effects of p85 on p110alpha: conformational stabilization of the catalytic subunit and inhibition of its lipid kinase activity. Our data reconcile the apparent conflict between previous studies of insect versus mammalian cells and show that p110alpha is both stabilized and inhibited by dimerization with p85.  相似文献   

13.
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.  相似文献   

14.
Tyrosine autophosphorylation of the v-Fms oncogene product results in the formation of high affinity binding sites for cellular proteins with Src homology 2 (SH2) domains that are involved in various signal cascades. Tryptic digestion of the autophosphorylated v-Fms and of its cellular counterpart, the feline c-Fms polypeptide, gave rise to at least six common major phosphopeptides, four of which have been characterized previously. Employing site-directed mutagenesis and phosphopeptide mapping of in vitro phosphorylated glutathione S-transferase v-Fms fusion proteins as well as full-length v-Fms molecules expressed in various cells, we show here that Tyr543 of the juxtamembrane domain and Tyr696 of the kinase insert domain constitute major autophosphorylation sites. Recombinant fusion proteins containing the tyrosine-phosphorylated kinase insert domain bind the growth factor receptor bound protein 2 and the p85 and p110 subunits of phosphatidylinositol 3'-kinase. In contrast, fusion proteins containing the juxtamembrane domain phosphorylated on Tyr543 fail to bind any of the known SH2 domain-containing cellular proteins but associate specifically with an as yet undefined 55-kDa cellular protein that by itself is phosphorylated on tyrosine.  相似文献   

15.
16.
The interaction of the Fyn SH3 domain with the p85 subunit of PI3-kinase is investigated using structural detail and thermodynamic data. The solution structure complex of the SH3 domain with a proline-rich peptide mimic of the binding site on the p85 subunit is described. This indicates that the peptide binds as a poly(L-proline) type II helix. Circular dichroism spectroscopic studies reveal that in the unbound state the peptide exhibits no structure. Thermodynamic data for the binding of this peptide to the SH3 domain suggest that the weak binding (approximately 31 microM) of this interaction is, in part, due to the entropically unfavorable effect of helix formation (delta S0 = -78 J.mol-1.K-1). Binding of the SH3 domain to the intact p85 subunit (minus its own SH3 domain) is tighter, and the entropic and enthalpic contributions are very different from those given by the peptide interaction (delta S0 = +252 J.mol-1.K-1; delta H0 = +44 kJ.mol-1). From these dramatically different thermodynamic measurements we are able to conclude that the interaction of the proline-rich peptide does not effectively mimic the interaction of the intact p85 subunit with the SH3 domain and suggest that other interactions could be important.  相似文献   

17.
We have tested the hypothesis that guanine-nucleotide-binding-protein-coupled receptors may be able to interact with each other at a molecular level. To address this question, we have initially created two chimeric receptors, alpha 2/m3 and m3/alpha 2, in which the C-terminal receptor portions (containing transmembrane domains VI and VII) were exchanged between the alpha 2C-adrenergic and the m3 muscarinic receptor. Transfection of COS-7 cells with either of the two chimeric constructs alone did not result in any detectable binding activity for the muscarinic ligand N-[3H]methylscopolamine or the adrenergic ligand [3H]rauwolscine. However, cotransfection with alpha 2/m3 and m3/alpha 2 resulted in the appearance of specific binding sites (30-35 fmol/mg of membrane protein) for both radioligands. These sites displayed ligand binding properties similar to those of the two wild-type receptors. Furthermore, COS-7 cells cotransfected with alpha 2/m3 and m3/alpha 2 were able to mediate a pronounced stimulation of phosphatidylinositol hydrolysis upon stimulation with the muscarinic agonist carbachol (Emax approximately 40-50% of wild-type m3). A mutant m3 receptor (containing 16 amino acids of m2 receptor sequence at the N terminus of the third cytoplasmic loop) that was capable of binding muscarinic ligands but was virtually unable to stimulate phosphatidylinositol hydrolysis was also used in various cotransfection experiments. Coexpression of this chimeric receptor with other functionally impaired mutant muscarinic receptors (e.g., with an m3 receptor containing a Pro-->Ala point mutation in transmembrane region VII) resulted in a considerable stimulation of phosphatidylinositol breakdown after carbachol treatment (Emax approximately 40-50% of wild-type m3). Thus, these data suggest that guanine-nucleotide-binding-protein-coupled receptors can interact with each other at a molecular level. One may speculate that the formation of receptor dimers involving the intermolecular exchange of N- and C-terminal receptor domains (containing transmembrane domains I-V and VI and VII, respectively) may underlie this phenomenon.  相似文献   

18.
The delta 2 glutamate receptors are prominently expressed in Purkinje cells and are thought to play a key role in the induction of cerebellar long-term depression. The synaptic and subsynaptic localization of delta receptors in rat cerebellar cortex was investigated with sensitive and high-resolution immunogold procedures. After postembedding incubation with an antibody raised to a C-terminal peptide of delta 2, high gold particle densities occurred in all parallel fiber synapses with Purkinje cell dendritic spines, whereas other synapses were consistently devoid of labeling. Among the types of immunonegative synapse were climbing fiber synapses with spines and parallel fiber synapses with dendritic stems of interneurons. At the parallel fiber-spine synapse, gold particles signaling delta receptors were restricted to the postsynaptic specialization. By the use of double labeling with two different gold particle sizes, it was shown that delta and AMPA GluR2/3 receptors were colocalized along the entire extent of the postsynaptic specialization without forming separate domains. The distribution of gold particles representing delta receptors was consistent with a cytoplasmic localization of the C terminus and an absence of a significant presynaptic pool of receptor molecules. The present data suggest that the delta 2 receptors are targeted selectively to a subset of Purkinje cell spines and that they are coexpressed with ionotropic receptors in the postsynaptic specialization. This arrangement could allow for a direct interaction between the two classes of receptor.  相似文献   

19.
A critical element of lutropin bioactivity in vivo is its rapid removal from the blood by a receptor, located in hepatic endothelial cells, that recognizes the terminal sulfated carbohydrate structure SO4-4-GalNAcbeta1,4GlcNAcbeta1,2Manalpha (S4GGnM). We have previously shown that the macrophage mannose (Man)-receptor cDNA directs the synthesis of a protein that binds oligosaccharides with either terminal S4GGnM or terminal Man, at independent sites. We now show that the cysteine-rich (Cys-Rich) domain at the N terminus of the Man/S4GGnM receptor accounts for binding of oligosaccharides with terminal GalNAc-4-SO4, whereas calcium-dependent carbohydrate recognition domains (CRDs) account for binding of ligands containing terminal Man. The Cys-Rich domain is thus a previously unrecognized carbohydrate binding motif. Cys-Rich domains have been described on the three other members of the endocytic C-type lectin family of receptors. The structural relationship of these receptors to the Man/S4GGnM receptor raises the possibility that their Cys-Rich domains also bind carbohydrate moieties and contribute to their function.  相似文献   

20.
Our previous studies on the p85/p110alpha phosphatidylinositol 3-kinase showed that the p85 regulatory subunit inhibits the p110alpha catalytic subunit, and that phosphopeptide activation of p85/p110alpha dimers reflects a disinhibition of p110alpha (Yu, J., Zhang, Y., McIlroy, J., Rordorf-Nikolic, T., Orr, G. A., and Backer, J. M. (1998) Mol. Cell. Biol. 18, 1379-1387). We now define the domains of p85 required for inhibition of p110alpha. The iSH2 domain of p85 is sufficient to bind p110alpha but does not inhibit it. Inhibition of p110alpha requires the presence of the nSH2 domain linked to the iSH2 domain. Phosphopeptides increase the activity of nSH2/iSH2-p110alpha dimers, demonstrating that the nSH2 domain mediates both inhibition of p110alpha and disinhibition by phosphopeptides. In contrast, phosphopeptides did not increase the activity of iSH2/cSH2-p110alpha dimers, or dimers composed of p110alpha and an nSH2/iSH2/cSH2 construct containing a mutant nSH2 domain. Phosphopeptide binding to the cSH2 domain increased p110alpha activity only in the context of an intact p85 containing both the nSH2 domain and residues 1-322 (the SH3, proline-rich and breakpoint cluster region-homolgy domains). These data suggest that the nSH2 domain of p85 is a direct regulator of p110alpha activity. Regulation of p110alpha by phosphopeptide binding to the cSH2 domain occurs by a mechanism that requires the additional presence of the nSH2 domain and residues 1-322 of p85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号