首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nowadays, low back pain becomes a common healthcare problem. Poor or unsuitable seat design is related to the discomfort and other healthcare problems of users. The aim of this study is to investigate the influence of seat design variables on the compressive loadings of lumbar joints. A basis that includes a musculoskeletal human body model and a chair model has been developed using LifeMOD Biomechanics Modeller. Inverse and forward dynamic simulations have been performed for various seat design parameters. The results show that the inclination of backrest and seat pan may or may not decrease the compressive spinal joint forces, depending on other conditions. The medium‐level height and depth of seat pan and the medium‐level and high‐level height of backrest are found to cause the minimum compressive loads on lumbar joints. This work contributes to a better understanding of sitting biomechanics and provides some useful guidelines for seat design.  相似文献   

2.
This study examined how the apparent mass and transmissibility of the human body depend on the magnitude of fore-and-aft vibration excitation and the presence of vertical vibration. Fore-and-aft and vertical acceleration at five locations along the spine, and pitch acceleration at the pelvis, were measured in 12 seated male subjects during fore-and-aft random vibration excitation (0.25–20 Hz) at three vibration magnitudes (0.25, 0.5 and 1.0 ms−2 r.m.s.). With the greatest magnitude of fore-and-aft excitation, vertical vibration was added at 0.25, 0.5, or 1.0 ms−2 r.m.s. Forces in the fore-and-aft and vertical directions on the seat surface were measured to calculate apparent masses. Transmissibilities and apparent masses during fore-and-aft excitation showed a principal resonance around 1 Hz and a secondary resonance around 2–3 Hz. Increasing the magnitude of fore-and-aft excitation, or adding vertical excitation, decreased the magnitudes of the resonances. At the primary resonance frequency, the dominant mode induced by fore-and-aft excitation involved bending of the lumbar spine and the lower thoracic spine with shear deformation of tissues at the ischial tuberosities. The relative contributions to this mode from each body segment (especially the pelvis and the lower thoracic spine) varied with vibration magnitude. The nonlinearities in the apparent mass and transmissibility during dual-axis excitation indicate coupling between the principal mode of the seated human body excited by fore-and-aft excitation and the cross-axis influence of vertical excitation.Relevance to industryUnderstanding movements of the body during exposure to whole-body vibration can assist the optimisation of seating dynamics and help to control the effects of the vibration on human comfort, performance, and health. This study suggests cross-axis nonlinearity in biodynamic responses to vibration should be considered when optimising vibration environments.  相似文献   

3.
This paper discusses a static and dynamic biomechanical evaluation of sagittal lifting activities via a microcomputer model. The input to the developed model includes operator's anthropometric data, and sex. The model provides the reactive forces and torques at the various joints of the body expressed in both British and metric systems. Also, the model shows the calculated compressive force on the spine at the fifth lumber/first sacral joint (L5/S1), and both kinematic and kinetic informations are displayed. The model has a menu of five options: (1) to analyze stress imposed on the L5/S1 during a dynamic activity; (2) to determine maximum weight to be allowed during a dynamic motion; (3) to check stress on the spine (L5/S1) for specified static postures; (4) to determine maximum weight to be allowed for a static posture; or (5) to stimulate the lifting action and determine critical postures while performing lifting tasks based on static biochemical analysis.  相似文献   

4.
王云涛  闫伟  王超营 《测控技术》2018,37(11):134-137
为了改善农用车、工程车等车辆座椅的减振性能,以电磁作动器为执行器,建立人体座椅—车辆两自由度的主动座椅悬架系统模型。通过对该系统的动力学模型进行线性化处理,并应用二次型最优控制理论,选取合适的加权系数,实现系统的最优控制。在Matlab/Simulink中以白噪声路面激励为系统输入,对主动控制和被动控制的座椅悬架系统仿真分析。结果表明:在不同的激励条件下,基于电磁作动器的主动座椅悬架系统减振效果显著,大幅降低了驾驶员所承受垂直振动加速度,提高了车辆的乘坐舒适性和操纵稳定性。  相似文献   

5.
The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The ‘seat effective amplitude transmissibility’ (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1–20 Hz at magnitudes of vibration from 0.2 to 1.6 ms−2 r.m.s. The ‘measured seat dynamic discomfort’ (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings.  相似文献   

6.
This study seeks to examine human vibration response using a musculoskeletal model that appropriately considers stretch reflex. The stretch reflex is modeled with a feedback control approach, and integrated into a generic musculoskeletal model to study the active muscle forces during seated whole body vibration. The model is used to investigate the effects of stretch reflex gain, vibration frequency and vibration magnitude on transmissibility from the seat to upper body and lower body and on muscle activations.The overall model is validated by comparison with thoracic and lumbar muscle activities measured in human participants during whole body vibration. The simulation results were consistent with the experimental results that the peak transmissibility occurred at resonance frequency of 5–6 Hz, and were in line with other experimental studies that found a primary resonance of 4–6 Hz. Furthermore, the peak normalized Electromyography (EMG) level accorded with the activation level for both thoracic and lumbar regions. What's more, an increase of primary resonance frequency was observed with increasing gains of stretch reflex. In contrary, the peak seat transmissibility of the upper body and lower body had a significant reduction.The major contribution of this model is that the proposed stretch reflex model provides a useful method to consider muscle active response in whole body vibration simulation. This may be used in future studies to better understand how stretch reflex affects spinal loading in a variety of conditions.  相似文献   

7.
The multi-axis vibration transmission characteristics of selected suspension seats were investigated in the laboratory. Subjects were exposed to a flat acceleration spectrum and two low frequency signals extracted from multi-axis acceleration data recorded at the floor of a passenger locomotive. Triaxial accelerations were measured at the floor of the vibration table and at the interfaces between the subject and mounted seat (seat pan and seat back). The transmission ratios between the overall seat pan and seat back accelerations and floor accelerations provided an effective tool for evaluating the effects of measurement site, vibration direction, and posture among the selected seating systems. The results showed that the system transfer matrix, estimated using a multiple-input/single-output model, would be less than ideal for predicting low frequency operational seat vibration when using suspension seats. The Seat Effective Amplitude Transmissibility (SEAT), estimated for the tested locomotive seats, was used to predict the weighted seat pan accelerations and Vibration Total Values for assessing a 1-h operational exposure in accordance with ISO 2631-1: 1997.

Relevance to industry

Multi-axis SEAT values can be estimated for seating systems tested in the laboratory using representative operational exposures. These values can be applied to monitored vehicle floor accelerations to target potentially harmful vibration in accordance with ISO 2631-1: 1997, assuming the operational exposures have similar frequency and magnitude characteristics. The transmission at the seat back should be considered when substantial low frequency multi-axis vibration is present.  相似文献   


8.
The transmissibility of seat depends on the dynamics of both the seat and the human body, and shows how the amplification and attenuation of vibration varies with the frequency of vibration. A systematic methodology was developed for finite element (FE) modelling of the dynamic interaction between a seat and the human body and predicting the transmissibility of a seat. A seat model was developed to improve computational efficiency before models of the seat pan and backrest were calibrated separately using load–deflection and dynamic stiffness measurements, joined to form the complete seat model, and integrated with the model of a manikin for further calibration. The calibrated seat model was combined with a human body model to predict the transmissibility of the seat. By combining a calibrated seat model with a calibrated human body model, and defining appropriate contacts between the two models, the vibration transmissibility with a seat–occupant system can be predicted.  相似文献   

9.
《Ergonomics》2012,55(8):1085-1100
Characterising the coupling between the occupant and vehicle seat is necessary to understand the transmission of vehicle seat vibration to the human body. In this study, the vibration characteristics of the human body coupled with a vehicle seat were identified in frequencies up to 100 Hz. Transmissibilities of three volunteers seated on two different vehicle seats were measured under multi-axial random vibration excitation. The results revealed that the human-seat system vibration was dominated by the human body and foam below 10 Hz. Major coupling between the human body and the vehicle seat-structure was observed in the frequency range of 10–60 Hz. There was local coupling of the system dominated by local resonances of seat frame and seat surface above 60 Hz. Moreover, the transmissibility measured on the seat surface between the human and seat foam is suggested to be a good method of capturing human-seat system resonances rather than that measured on the human body in high frequencies above 10 Hz.Practitioner Summary: The coupling characteristics of the combined human body and vehicle seat system has not yet been fully understood in frequencies of 0.5–100 Hz. This study shows the human-seat system has distinctive dynamic coupling characteristics in three different frequency regions: below 10 Hz, 10–60 Hz, and above 60 Hz.  相似文献   

10.
The paper describes the simulation of a vertical seat suspension system with a variable damper. The model presented describes a real damper with bushings and is an extension of the classical linear SDOF oscillatory system. Transfer functions were identified from laboratory measurements and the mechano-mathematical model produced was validated by field measurements. The seat cushion parameters were identified from laboratory measurements and combined with standardized vertical (z-axis) seated human body models (ISO 5982 and DIN 45676). These models, together with an inert mass human body model, were used to predict the vibration mitigation performance of the seat–occupant system. The results were compared to data obtained from field measurements under real operating conditions. It was found that the use of the inert mass human body model resulted in the smallest differences between predicted and measured system vibration isolation performance for the field excitation in the frequency band up to 4.5 Hz, where most of the vibratory energy was present in the field. Hence this simplified model is suggested for prediction of vibration influence on locomotive driver under field conditions.

Relevance to the industry

The developed model using various seated human body models in the vertical direction revealed that an inert mass instead of the human body model may be sufficient for reliable prediction of seat vibration mitigation properties in rail vehicles. The developed model and findings reported here assisted in development of an improved locomotive driver's seat.  相似文献   


11.
《Ergonomics》2012,55(12):1806-1822
The apparent mass (AM) responses of human body seated on elastic seat, without and with a vertical back support, are measured using a seat pressure sensing mat under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 rms acceleration) in 0.50–20 Hz frequency range. The responses were also measured with a rigid seat using the pressure mat and a force plate in order to examine the validity of the pressure mat. The pressure mat resulted in considerably lower AM magnitudes compared to the force plate. A correction function was proposed and applied, which resulted in comparable AM from both measurement systems for the rigid seat. The correction function was subsequently applied to derive AM of subjects seated on elastic seat. The responses revealed lower peak magnitude and corresponding frequency compared to those measured with rigid seat, irrespective of back support and excitation considered.  相似文献   

12.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

13.
Makhsous M  Hendrix R  Crowther Z  Nam E  Lin F 《Ergonomics》2005,48(9):1183-1199
A new car seat design, which allows the back part of the seat (BPS) to lower down while a protruded cushion supports the lumbar spine, was quantitatively tested to determine its effectiveness and potentials in reducing whole-body vibration (WBV) and musculoskeletal disorders in automobile drivers. Nine subjects were tested to drive with the seat in: 1) the conventional seating arrangement (Normal posture); and 2) the new seating design (without BPS (WO-BPS) posture). By reducing contact between the seat and the ischial tuberosities (ITs), the new seating design reduced both contact pressure and amplitude of vibrations transmitted through the body. Root-mean-squared values for acceleration along the z-axis at the lumbar spine and ITs significantly decreased 31.6% (p < 0.01) and 19.8% (p < 0.05), respectively, by using the WO-BPS posture. At the same time, vibration dose values significantly decreased along the z-axis of the lumbar spine and ITs by 43.0% (p < 0.05) and 34.5% (p < 0.01). This reduction in WBV allows more sustained driving than permitted by conventional seating devices, by several hours, before sustaining unacceptable WBV levels. Such seating devices, implemented in large trucks and other high-vibration vehicles, may reduce the risk of WBV-related musculoskeletal disorders among drivers.  相似文献   

14.
Contact Modeling and Identification of Planar Somersaults on the Trampoline   总被引:1,自引:0,他引:1  
This paper presents an extensive study on the trampoline-performed planar somersaults. First, a multibody biomechanical model of the trampolinist and the recurrently interacting trampoline bed are developed, including both the motion equations and the determination of joint reactions. The mathematical model is then identified –the mass and inertia characteristics of the human body are estimated, and the stiffness and damping characteristics of the trampoline bed are measured. By recording the actual somersault performances the motion characteristics of the stunts, i.e. the time variations of positions, velocities and accelerations of the body parts are also obtained. Finally, an inverse dynamics formulation for the system designated as an under-controlled system, is developed. The followed inverse dynamics simulation results in the torques of muscle forces in the joints that assure the realization of the actual motion. The reaction forces in the joints during the analyzed evolutions are also determined. Using the kinematic and dynamics characteristics, the nature of the stunts, the way the human body is maneuvered and controlled, can be studied.  相似文献   

15.
The present study aimed to (1) employ the method for evaluation of vibration containing multiple shocks according to ISO/CD 2631–5:2014 (Model 1) and DIN SPEC 45697:2012 in a cohort of 537 professional drivers, (2) deliver the results for a re-analysis of epidemiological data obtained in the VIBRISKS study, (3) clarify the extent to which vibration acceleration and individual variables influence risk values, such as the daily compressive dose Sed and the risk factor R, and (4) compare the results with in vivo measurements and those obtained in previous studies with similar models. The risk factor R was influenced by the acceleration, lifetime exposure duration, sitting posture, age at the start of exposure and body mass/body mass index in order of decreasing effect. Age and annual and daily exposure duration had only a marginal effect. The daily compressive dose Sed and the risk factor R showed weak linear association with the daily vibration exposure A(8) and the vibration dose value VDV. The study revealed high shear forces in the lumbar spine.  相似文献   

16.
The discomfort caused by lateral oscillation, roll oscillation, and fully roll-compensated lateral oscillation has been investigated at frequencies between 0.25 and 1.0 Hz when sitting on a rigid seat and when sitting on a compliant cushion, both without a backrest. Judgements of vibration discomfort and the transmission of lateral and roll oscillation through the seat cushion were obtained with 20 subjects. Relative to the rigid seat, the cushion increased lateral acceleration and roll oscillation at the lower frequencies and also increased discomfort during lateral oscillation (at frequencies less than 0.63 Hz), roll oscillation (at frequencies less than 0.4 Hz), and fully roll-compensated lateral oscillation (at frequencies between 0.315 and 0.5 Hz). The root-sums-of-squares of the frequency-weighted lateral and roll acceleration at the seat surface predicted the greater vibration discomfort when sitting on the cushion. The frequency-dependence of the predicted discomfort may be improved by adjusting the frequency weighting for roll acceleration at frequencies between 0.25 and 1.0 Hz.  相似文献   

17.
《Ergonomics》2012,55(9):1513-1531
A series of experiments has investigated the transmission of roll and pitch seat vibration to the heads of seated subjects. Head motion was measured in all six axes using a light-weight bite-bar while seated subjects were exposed to random motion at frequencies of up to 5 Hz at 1.0 rad.s ?2 r.m.s. Subjects sat on a rigid flat seat in two body postures: ‘back-on’ (back in contact with backrest) and ‘back-off’ (no backrest contact). The influence of the position of the centre of rotation was also investigated.

Motion at the head occurred mostly in the lateral, roll and yaw axes during exposure to roll seat vibration and in the fore-and-aft, vertical and pitch axes during exposure to pitch seat vibration. A reduction in the magnitude of head motion occurred when the subjects sat in a 'back-off' posture compared with a 'back-on' posture. Varying the position of the centre of rotation along the lateral axis during roll seat vibration affected vertical and pitch head motion: least head motion occurred when the centre of rotation was in line with the subject's mid-sagittal plane. Varying the position of the centre of rotation along the vertical axis during roll seat vibration affected head motion in the mid-coronal plane: roll head motion decreased as the position of the centre of rotation was raised from below the seat surface to above the seat surface. Varying the centre of rotation (along the fore-and-aft and vertical axes) during pitch seat vibration altered head motion in the mid-sagittal plane. Head motion increased with increasing distance of the centre of rotation in front or behind the subject's ischial tuberosities and increased as the seat was raised from below the centre of rotation to above the centre of rotation.  相似文献   

18.
Seventeen (17) subjects were exposed to tri-axial vehicle whole-body vibration for approximately 3 h, and measured hourly for body height. The control was the same environment, but no vibration. A broad band predominantly z-axis acceleration (1.6–10 Hz), with a mean level of 0.885 m/s2 at the seat, was generated by a semi-truck tractor driven on secondary roads. The dominant one-third octave band of the vibration at the seat was 2 Hz with an acceleration magnitude of 0.521 m/s2. At the end of the first hour, the results indicated a subject growth by 1.14 mm when exposed to vibration and a shrinkage of nearly equal amount without vibration. In the second and third hours, subjects followed the natural tendency to shrink under both conditions. At the end of the third hour, the subject height with vibration was 2.23 mm higher than that without vibration.

Relevance to industry

Whole body vibration has been identified as a possible cause for low-back pain problem in professional truck drivers. The body height measure in this study could potentially provide a link between low-back pain and vibration  相似文献   


19.
《Ergonomics》2012,55(7):967-978
To investigate the influence of the injured disc, frequency, load and damping on the facet contact forces of the low lumbar spine on the condition of whole body vibration, a detailed 3-D nonlinear finite element model was created based on the actual geometrical data of embalmed vertebrae of lumbar spine. The denucleation and facetectomy, together with removal of the capsular ligaments was employed to mimic the injury conditions of lumbar spine after surgery. The compression cyclic force was assumed to mimic the dynamic loads of transport vehicles. The results show that the high frequency vibration might increase both of the value and the vibration amplitude of facet contact forces of the lumbar spine under whole body vibration. The nucleus removal may increase significantly the facet contact forces. Although damping can decrease the vibration amplitude of facet contact forces for intact models, it has less effect on the vibration amplitude of facet contact force for the denucleated models. The denucleation of intervertebral discs is more harmful to the facet articulation on the condition of whole body vibration.  相似文献   

20.
Guo LX  Zhang M  Teo EC 《Ergonomics》2007,50(7):967-978
To investigate the influence of the injured disc, frequency, load and damping on the facet contact forces of the low lumbar spine on the condition of whole body vibration, a detailed 3-D nonlinear finite element model was created based on the actual geometrical data of embalmed vertebrae of lumbar spine. The denucleation and facetectomy, together with removal of the capsular ligaments was employed to mimic the injury conditions of lumbar spine after surgery. The compression cyclic force was assumed to mimic the dynamic loads of transport vehicles. The results show that the high frequency vibration might increase both of the value and the vibration amplitude of facet contact forces of the lumbar spine under whole body vibration. The nucleus removal may increase significantly the facet contact forces. Although damping can decrease the vibration amplitude of facet contact forces for intact models, it has less effect on the vibration amplitude of facet contact force for the denucleated models. The denucleation of intervertebral discs is more harmful to the facet articulation on the condition of whole body vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号