共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael Baldea 《Chemical engineering science》2007,62(12):3218-3230
Autothermal reactors, coupling endothermic and exothermic reactions in parallel channels, represent one of the most promising technologies for hydrogen production. The bulk of existing research work concerning their operation refers, however, to steady state conditions. In the present work, the dynamic behavior of autothermal reactors is analyzed. It is demonstrated that such systems are modeled by systems of equations that are stiff, their dynamics consequently featuring two time scales. Within the framework of singular perturbations, reduced-order, nonstiff models are derived for the transient evolution in each time scale. Furthermore, the challenges posed by the transient operation of autothermal reactors are identified, along with demonstrating the implementation of feedback control in order to improve transient performance and to avoid severe issues (such as reactor extinction) that can arise in the course of operating the reactor. All theoretical concepts are illustrated with numerical simulations performed using the model of a hydrogen production reactor. 相似文献
2.
A coal gasification mathematical model that can predict temperature, converted fraction and particle size distribution for solids have been developed for a high pressure fluidized bed. For gases in both emulsion and bubble phase, it can predict temperature profiles, gas composition, velocities and other fluid-dynamic parameters. In the feed zone, it could be considered a Gaussian distribution or any other distribution for the solid particle size. Experimental data from literature have been used to validate the model. Finally, the model can be used to optimize the gasification process changing several parameters, such as excess of air, particle size distribution, coal type and reactor geometry. 相似文献
3.
Sauri Gudlavalleti Tijmen Ros Dick Lieftink 《Applied catalysis. B, Environmental》2007,74(3-4):251-260
This paper describes a novel approach to life studies on catalysts used in non-isothermal reactors, using a single long-term experiment. Temperature dependence of catalyst aging is determined by comparing the activity reduction of portions of the catalyst from different sections of the reactor, subjected to different temperatures. Time dependence is determined by fitting the drift in catalyst temperatures to a time-dependent reaction rate via a thermodynamic reactor model. Experimentally, a monolithic autothermal reforming catalyst was subjected to thermally accelerated aging under reforming conditions in an adiabatic laboratory mini-flow reactor for 1000 h. Methane was used as the fuel. The axial temperature profile of the catalyst was monitored using thermocouples placed at various locations along the catalyst. A gradual change in temperature profile, with increasing temperatures due to decreasing steam-reforming activity, was observed. The aged monolith was cut up into short pieces centered on the thermocouple locations. The pieces, each aged at a different temperature due to its location, were tested individually for activity. The reduced activities were correlated with the aging temperature to obtain the temperature dependence of thermal sintering rates. A generalized power-law equation (GPLE) model for sintering was fit to the activity data. A plug flow reactor (PFR) model describing the reaction was built and the sintering kinetics were incorporated. The PFR model was used to predict changes in catalyst performance due to sintering under normal operating conditions. Thermal sintering deactivation for this catalyst was found to be within acceptable limits for commercial applications. 相似文献
4.
Model-based controllers for a bench scale autothermal tubular packed-bed reactor have been formulated using the Internal Model Control (IMC) approach. The Structural Dominance Analysis technique has been used in developing the reduced-order models. Controller performance at robust and sensitive steady states have been assessed through simulations and experiments. Both PI and model-based controllers can regulate reactor operation at robust steady states, but only third order IMC controllers are able to regulate reactor operation at the sensitive steady state. 相似文献
5.
An autothermal membrane reformer comprising two separated compartments, a methane oxidation catalytic bed and a methane steam reforming bed, which hosts hydrogen separation membranes, is optimized for hydrogen production by steam reforming of methane to power a polymer electrolyte membrane fuel cell (PEMFC) stack. Capitalizing on recent experimental demonstrations of hydrogen production in such a reactor, we develop here an appropriate model, validate it with experimental data and then use it for the hydrogen generation optimization in terms of the reformer efficiency and power output. The optimized reformer, with adequate hydrogen separation area, optimized exothermic‐to‐endothermic feed ratio and reduced heat losses, is shown to be capable to fuel kW‐range PEMFC stacks, with a methane‐to‐hydrogen conversion efficiency of up to 0.8. This is expected to provide an overall methane‐to‐electric power efficiency of a combined reformer‐fuel cell unit of ~0.5. Recycling of steam reforming effluent to the oxidation bed for combustion of unreacted and unseparated compounds is expected to provide an additional efficiency gain. © 2010 American Institute of Chemical Engineers AIChE J, 2011 相似文献
6.
A rigorous two‐dimensional model is developed for simulating the operation of a less‐investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non‐availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. In all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer. 相似文献
7.
Xun Huang Xue-Gang Li Wen-De Xiao Zidong Wei 《American Institute of Chemical Engineers》2023,69(4):e17945
The current commercial multistage reactor for methanol to propylene (MTP) process suffers from poor propylene selectivity and catalyst efficiency, mainly because of the low inlet methanol concentration and long residence time. In this work, we proposed an autothermal co-current flow reactor for MTP process, where the reaction heat is continuously removed through heat exchange with cold reactants, thus single-stage reactor can be used with higher methanol inlet concentration. The reactor feasibility was investigated by a three-dimensional multiscale model, in which the diffusion–reaction interaction inside catalyst particle was described by a neural network model trained by machine learning. With the feeding methanol fraction increasing to 30%, propylene selectivity reaches 82.27% while the space velocity approaches 2.68 gMeOH gcat−1 h−1 at 99.97% methanol conversion, about 1.4 and 3.8 times those of a commercial multibed reactor, respectively. With proper catalyst bed dilution, the reaction temperature is well controlled between 700 and 754 K. 相似文献
8.
9.
Xanthias Karatzas Marita Nilsson Jazaer Dawody Bård Lindström Lars J. Pettersson 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2010,156(2):366-379
The present paper describes the characterization of an autothermal reformer designed to generate hydrogen by autothermal reforming (ATR) from commercial diesel fuel (~10 ppm S) and jet fuel (~200 ppm S) for a 5 kWe polymer electrolyte fuel cell (PEFC). Commercial noble metal-based catalysts supported on 900 cpsi cordierite monoliths substrates were used for ATR with reproducible results. Parameters investigated in this study were the variation of the fuel inlet temperature, fuel flow and the H2O/C and O2/C ratios. Temperature profiles were studied both in the axial and radial directions of the reformer. Product gas composition was analyzed using gas chromatography.It was concluded from the experiments that an elevated fuel inlet temperature (≥60 °C) and a higher degree of fuel dispersion, generated via a single-fluid pressurized-swirl nozzle at high fuel flow, significantly improved the performance of the reformer. Complete fuel conversion, a reforming efficiency of 81% and an H2 selectivity of 96% were established for ATR of diesel at P = 5 kWe, H2O/C = 2.5, O2/C = 0.49 and a fuel inlet temperature of 60 °C. No hot-spot formation and negligible coke formation were observed in the reactor at these operating conditions. The reforming of jet fuel resulted in a reforming efficiency of only 42%. A plausible cause is the coke deposition, originating from the aromatics present in the fuel, and the adsorption of S-compounds on the active sites of the reforming catalyst.Our results indicate possibilities for the developed catalytic reformer to be used in mobile fuel cell applications for energy-efficient hydrogen production from diesel fuel. 相似文献
10.
介绍了煤等离子气化的工艺过程及煤等离子气化反应器装置的结构形式,建立了等离子体反应器的热流场计算流体力学模型,将此模型应用于单入口、双入口及带保护气的双入口等离子反应器模拟,采用不完全乔勒斯基共轭梯度法对热流体耦合场进行求解。结果表明,采用双入口结构,可提高反应器负荷,在等离子反应器的等离子入口周边设置保护气可降低壁面结焦,当保护气的入口流速为70 m/s左右时,效果较好。 相似文献
11.
Beno?ˆt Debbaut 《Chemical engineering science》2009,64(22):4580-4587
Transient squeeze flow and recovery experiments are simulated for a rubber compound. The rheological behaviour of the selected compound is described with a multi-mode Leonov model developed for filled uncured elastomers. The calculation is performed with the finite element software POLYFLOW. In particular, we focus on the deformation undergone under the application of a load, and on the subsequent recovery that develop upon cessation of the squeezing force. We also try to establish a possible empirical relationship between the applied squeeze force and time interval (input data) and the resulting deformation and recovery (output quantities). 相似文献
12.
介绍了同心圆式反应器、板式反应器、壁反应器、微通道反应器在自热重整反应制氢中的特点。同心圆式反应器的传热是控制步骤,为强化传热而开发了空间形状不同和流体经过反应器不同腔体的先后顺序不同的反应器;板式反应器易于组装、拆卸和放大,而且热效率也比较高,是目前十分活跃的研究领域,重点在于操作参数和设计的优化及其高效壁载制氢催化剂的研制;壁反应器的反应表面和换热表面不分离,具有较高的热量耦合效果;微通道反应器具有优越的传热性能,但对加工和流体的性质有比较苛刻的要求。另外,不同燃料制氢机理的研究及其过程参数的稳态、瞬态模拟,为反应器的设计提供了理论依据。而制氢过程并行单元的研究为系统的集成奠定了基础。最后,指出开发板式壁反应器以及开展其在CO变换、净化方面的研究有较好的发展前景。 相似文献
13.
A centrifugal partition chromatograph (CPC) was used as a liquid-liquid catalytic reactor for the isomerisation of hexen-3-ol into ethylpropylketone with a water soluble rhodium catalyst. Global mass transfer coefficients were measured and shown to depend on both the nature of the solute and the flow rate. Liquid-liquid partition isotherms were also determined with the CPC using elution chromatography. Finally, a reactor model was derived to account for the experimental results obtained both under stationary and transient (pulse) conditions. A parameter sensitivity evaluation is also presented. 相似文献
14.
15.
Industrial autothermal cationic isobutylene polymerization reactors may present very complex dynamic behavior and difficult operation. A mathemathical model was developed to describe the operation of an autothermal solution industrial reactor, and some possible sources of complex dynamical behavior were analyzed. The results obtained indicate that the most probable source of the complex behavior observed industrially is the existence of adventitious impurities in the feeed stream. The effects caused by the presence of adventitious impurities on process operation and product properties were investigated for both polymerization and oligomerization. In the first case, impurities influence the reactor productivity but do not change the polymer quality. In the oligomerization, both the polymer quality and the reactor productivity are seriously affected by the existence of impurities in the feed stream. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1403–1413, 1997 相似文献
16.
GSP气化炉是国内最近引进的西门子公司开发的粉煤气化技术,由于对其炉膛内气固反应流动特性认识不足,运行中出现耐火砖烧穿、合成气含灰过高等问题。利用数值模拟方法,采用双组分PDF模型耦合湍流-化学反应、随机轨道法耦合湍流-颗粒运动,针对GSP气化炉内多相反应流场建立三维数值模型。计算结果与实验值及文献计算结果一致,表明该模型可用于GSP气化炉的模拟计算。研究发现,炉膛内流场主要分为旋转射流区、内回流区、外回流区和管流区。高温区位于发生氧化反应的旋转射流区和内回流区上部,而外回流区和管流区主要发生还原反应,温度较为均匀;炉膛高度1/3位置处为高温火焰直接冲刷处,在运行时需重点考虑该位置的热防护。 相似文献
17.
Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen 总被引:1,自引:0,他引:1
The conceptual feasibility of a packed bed membrane reactor for the autothermal reforming (ATR) of methane for the production of ultrapure hydrogen was investigated. By integrating H2 permselective Pd-based membranes under autothermal conditions, a high degree of process integration and intensification can be accomplished which is particularly interesting for small scale H2 production units. A two-dimensional pseudo-homogeneous packed bed membrane reactor model was developed that solves the continuity and momentum equations and the component mass and energy balances. In adiabatic operation, autothermal operation can be achieved; however, large axial temperature excursions were seen at the reactor inlet, which are disadvantageous for membrane life and catalyst performance. Different operation modes, such as cooling the reactor wall with sweep gas or distributive feeding of O2 along the reactor length to moderate the temperature profile, are evaluated. The concentration polarisation because of the selective hydrogen removal along the membrane length was found to become significant with increasing membrane permeability thereby constraining the reactor design. To decrease the negative effects of mass transfer limitations to the membrane wall, a small membrane tube diameter needs to be selected. For a relatively small ratio of the membrane tube diameter to the particle diameter, the porosity profile needs to be taken into account to prevent overestimation of the H2 removal rate. It is concluded that autothermal production of H2 in a PBMR is feasible, provided that the membranes are positioned outside the inlet region with large temperature gradients. 相似文献
18.
《Journal of the European Ceramic Society》2017,37(3):985-994
The microstructure and macroscopic properties of ferroelectric materials at high pressure are of great interest in both the engineering and scientific arenas. The effect ofthe pressure value, loading time (the time taken for the pressure to increase from atmospheric pressure to the highest pressure) and loading direction on the evolution of domains and the ferroelectric phase transition for a BaTiO3 single crystal was investigated using a phase field approach. It was found that under symmetrical compression loading the pressure loading time affected the phase transition path and rate but did not affect the phase transition pressure or the ultimate stable phase. For example, at room temperature, even when the loading time increased from 1 ns to 10 μs, the phase transition pressure remained stable at 2.1 GPa, but the phase transition time was prolonged. At −70 °C the orthorhombic–cubic phase transition was induced when the loading pressure was 5 GPa and the loading time was 1 ns, whereas the orthorhombic–tetragonal–cubic phase transition occurred when the loading time increased to 10 μs. In addition, it was found that the application of symmetrical pressure tended to reduce the degree of ferroelectricity, while one-dimensional compression favored the ferroelectric phase. 相似文献
19.
This paper concerns modeling of the transient and the steady state operation of a fluidized bed reactor for the catalytic ammoxidation of propylene to acrylonitrile. To maintain constant the temperature of the reaction in order to facilitate the phenomenological study as well as to avoid risks of destruction of the catalyst, a self tuning P.I.D. controller has been used. The controller derived from a discrete P.I.D. regulator is based on pole assignment. It uses a recursive parameter estimator based on the least square method. The reactor has been interfaced with an Apple II micro-computer. The results obtained illustrates the inherent capability of self adaptive control to adapt the change of the environment where conventional control fails
Modeling of the reactor is based on the Kato and Wen bubble assemblage model corrected by including the wake of the bubbles with their clouds, as proposed hy Stergiou. This modified model gives good predictions of the operation of the reactor for steady as well as transient operation. 相似文献
Modeling of the reactor is based on the Kato and Wen bubble assemblage model corrected by including the wake of the bubbles with their clouds, as proposed hy Stergiou. This modified model gives good predictions of the operation of the reactor for steady as well as transient operation. 相似文献
20.
对于一个日产1000吨合成氨装置,原料使用硬质沥青与某一比例的渣油.在德士古炉中气化.通过模拟计算得出气体成分,并预测工艺条件改变时的最佳操作条件。 相似文献