首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid water transport is one of the key challenges regarding the water management in a proton exchange membrane (PEM) fuel cell. Conventional gas diffusion layers (GDLs) do not allow a well-organized liquid water flow from catalyst layer to gas flow channels. In this paper, three innovative GDLs with different micro-flow channels were proposed to solve liquid water flooding problems that conventional GDLs have. This paper also presents numerical investigations of air–water flow across the proposed innovative GDLs together with a serpentine gas flow channel on PEM fuel cell cathode by use of a commercial computational fluid dynamics (CFD) software package FLUENT. The results showed that different designs of GDLs will affect the liquid water flow patterns significantly, thus influencing the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown. Several gas flow problems for the proposed different kinds of innovative GDLs were observed, and some useful suggestions were given through investigating the flow patterns inside the proposed GDLs.  相似文献   

2.
Non‐uniform current distribution in polymer electrolyte membrane (PEM) fuel cells results in local over‐heating, accelerated ageing, and lower power output than expected. This issue is quite critical when a fuel cell experiences water flooding. In this study, the performance of a PEM fuel cell is investigated under cathode flooding conditions. A two‐dimensional approach is proposed for a single PEM fuel cell based on conservation laws and electrochemical equations to provide useful insight into water transport mechanisms and their effect on the cell performance. The model results show that inlet stoichiometry and humidification, and cell operating pressure are important factors affecting cell performance and two‐phase transport characteristics. Numerical simulations have revealed that the liquid saturation in the cathode gas distribution layer (GDL) could be as high as 20%. The presence of liquid water in the GDL decreases oxygen transport and surface coverage of active catalyst, which in turn degrades the cell performance. The thermodynamic quality in the cathode flow channel is found to be greater than 99.7%, indicating that liquid water in the cathode gas channel exists in very small amounts and does not interfere with the gas phase transport. A detailed analysis of the operating conditions shows that cell performance should be optimized based on the maximum average current density achieved and the magnitude of its dispersion from its mean value. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.  相似文献   

4.
Liquid water formation and transport were investigated by direct experimental visualization in an operational transparent single-serpentine PEM fuel cell. We examined the effectiveness of various gas diffusion layer (GDL) materials in removing water away from the cathode and through the flow field over a range of operating conditions. Complete polarization curves as well as time evolution studies after step changes in current draw were obtained with simultaneous liquid water visualization within the transparent cell. The level of cathode flow field flooding, under the same operating conditions and cell current, was recognized as a criterion for the water removal capacity of the GDL materials. When compared at the same current density (i.e. water production rate), higher amount of liquid water in the cathode channel indicated that water had been efficiently removed from the catalyst layer.

Visualization of the anode channel was used to investigate the influence of the microporous layer (MPL) on water transport. No liquid water was observed in the anode flow field unless cathode GDLs had an MPL. MPL on the cathode side creates a pressure barrier for water produced at the catalyst layer. Water is pushed across the membrane to the anode side, resulting in anode flow field flooding close to the H2 exit.  相似文献   


5.
Water management in cathode gas diffusion electrode (GDE) of polymer electrolyte fuel cell (PEFC) is essential for high performance operation, because liquid water condensed in porous gas diffusion layer (GDL) and catalyst layer (CL) blocks oxygen transport to active reaction sites. In this study, the average liquid water content inside the cathode GDE of a low-temperature PEFC is experimentally and quantitatively estimated by the weight measurement, and the relationship between the water accumulation rate in the cathode GDE and the cell voltage is investigated. The liquid water behavior at the cathode is also visualized using an optical diagnostic, and the effects of operating conditions and GDL structures on the water transport in the cathode GDE are discussed. It is found that the liquid water content in the cathode GDE increases remarkably after starting the fuel cell operation due to the water production at the CL. At a high current density, the cell voltage drops suddenly after starting the operation in spite of a low water content in the cathode GDE. When the GDL thickness is increased, much water accumulates near the cathode CL and the fuel cell shuts down immediately after the operation. In the final section of this paper, the structure of cathode GDL that has several grooves for water removal is proposed to prevent water flooding and improve fuel cell performance. This groove structure is effective to promote the removal of the liquid water accumulated near the active catalyst sites.  相似文献   

6.
《Journal of power sources》2006,159(2):922-927
The gas diffusion layer (GDL) plays a very important role in the performance of Proton Exchange Membrane (PEM) fuel cells. The amount of compression on the GDL affects the contact resistance, the GDL porosity, and the fraction of the pores occupied by liquid water, which, in turn, affect the performance of a PEM fuel cell. In order to study the effects of GDL compression on fuel cell performance a unique fuel cell test fixture was designed and created such that, without disassembling the fuel cell, varying the compression of the GDL can be achieved both precisely and uniformly. Besides, the compression can be precisely measured and easily read out. Using this special fuel cell fixture, the effects of GDL compression on PEM fuel cell performance under various anode and cathode flow rates were studied. Two different GDL materials, carbon cloth double-sided ELAT and TORAY™ carbon fiber paper were used in these studies. The experimental results show that generally the fuel cell performance decreases with the increase in compression and over-compression probably exists in most fuel cells. In the low current density region, generally there exists an optimal compression ratio.  相似文献   

7.
《Journal of power sources》2006,162(1):415-425
In polymer electrolyte membrane (PEM) fuel cells, serpentine flow channels are used conventionally for effective water removal. The reactant flows along the flow channel with pressure decrease due to the frictional and minor losses as well as the reactant depletion because of electrochemical reactions in the cells. Because of the short distance between the adjacent flow channels, often in the order of 1 mm or smaller, the pressure gradient between the adjacent flow channels is very large, driving part of reactant to flow through the porous electrode backing layer (or the so-called gas diffusion layer)—this cross-leakage flow between adjacent flow channels in PEM fuel cells has been largely ignored in previous studies. In this study, the effect of cross-flow in an electrode backing layer has been investigated numerically by considering bipolar plates with single-channel serpentine flow field for both the anode and cathode side. It is found that a significant amount of reactant gas flows through the porous electrode structure, due to the pressure difference, and enters the next flow channel, in addition to a portion entering the catalyst layer for reaction. Therefore, mixing occurs between the relatively high concentration reactant stream following the flow channel and the relatively low reactant concentration stream going through the electrode. It is observed that the cross-leakage flow influences the reactant concentration at the interface between the electrode and the catalyst layer, hence the distribution of reaction rate or current density generated. In practice, this cross-leakage flow in the cathode helps drive the liquid water out of the electrode structure for effective water management, partially responsible for the good PEM fuel cell performance using the serpentine flow channels.  相似文献   

8.
In this paper, a two-phase two-dimensional PEM fuel cell model, which is capable of handling liquid water transport across different porous materials, is employed for parametric studies of liquid water transport and distribution in the cathode of a PEM fuel cell. Attention is paid particularly to the coupled effects of two-phase flow and heat transfer phenomena. The effects of key operation parameters, including the outside cell boundary temperature, the cathode gas humidification condition, and the cell operation current, on the liquid water behaviors and cell performance have been examined in detail. Numerical results elucidate that increasing the fuel cell temperature would not only enhance liquid water evaporation and thus decrease the liquid saturation inside the PEM fuel cell cathode, but also change the location where liquid water is condensed or evaporated. At a cell boundary temperature of 80 °C, liquid water inside the catalyst layer and gas diffusion media under the current-collecting land would flow laterally towards the gas channel and become evaporated along an interface separating the land and channel. As the cell boundary temperature increases, the maximum current density inside the membrane would shift laterally towards the current-collecting land, a phenomenon dictated by membrane hydration. Increasing the gas humidification condition in the cathode gas channel and/or increasing the operating current of the fuel cell could offset the temperature effect on liquid water transport and distribution.  相似文献   

9.
Proton exchange membrane (PEM) fuel cells are considered to be promising alternatives to natural resources for generating electricity and various other powers. Optimal water management in the gas diffusion layer (GDL) is critical to the high performance of fuel cells. The basic function of the GDL includes transporting the reactant gas from flow channels to the catalyst effectively, draining liquid water from the catalyst layer to the flow channels, and conducting electrons with low humidity. In this study, poly-acrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to their stabilization at atmospheric pressure at 280 °C for 1 h and carbonization at 850 °C for one more hour. The surface hydrophobicity of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs showed better results than the conventional ones. Water condensation tests (superhydrophobic and hydrophilic) on the surfaces of the GDLs showed a crucial step towards improved water management in fuel cells. This study may open up new possibilities for developing high-performing GDL materials for future PEM fuel cell applications.  相似文献   

10.
A partially flooded gas diffusion layer (GDL) model is proposed and solved simultaneously with a stack flow network model to estimate the operating conditions under which water flooding could be initiated in a polymer electrolyte membrane (PEM) fuel cell stack. The models were applied to the cathode side of a stack, which is more sensitive to the inception of GDL flooding and/or flow channel two-phase flow. The model can predict the stack performance in terms of pressure, species concentrations, GDL flooding and quality distributions in the flow fields as well as the geometrical specifications of the PEM fuel cell stack. The simulation results have revealed that under certain operating conditions, the GDL is fully flooded and the quality is lower than one for parts of the stack flow fields. Effects of current density, operating pressure, and level of inlet humidity on flooding are investigated.  相似文献   

11.
Anode water removal (AWR) is studied as a diagnostic tool to assess cathode gas diffusion layer (GDL) flooding in PEM fuel cells. This method uses a dry hydrogen stream to remove product water from the cathode, showing ideal fuel cell performance in the absence of GDL mass transfer limitations related to water. When cathode GDL flooding is limiting, the cell voltage increases as the hydrogen stoichiometry is increased. Several cathode GDLs were studied to determine the effect of microporous layer (MPL) and PTFE coating. The largest voltage gains occur with the use of cathode GDLs without an MPL since these GDLs are prone to higher liquid water saturation. Multiple GDLs are studied on the cathode side to exacerbate GDL flooding conditions to further confirm the mechanism of the AWR process. Increased temperature and lower cathode RH allow for greater overall water removal so the voltage improvement occurs faster, though this leads to quicker membrane dehydration.  相似文献   

12.
A two-dimensional (2D), single- and two-phase, hybrid multi-component transport model is developed for the cathode of PEM fuel cell using interdigitated gas distributor. The continuity equation and Darcy's law are used to describe the flow of the reactant gas and production water. The production water is treated as vapor when the current density is small, and as two-phase while the current density is greater than the critical current density. The advection–diffusion equations are utilized to study species transport of multi-component mixture gas. The Butler–Volmer equation is prescribed for the domain in the catalyst layer. The predicted results of the hybrid model agree well with the available experimental data. The model is used to investigate the effects of operating conditions and the cathode structure parameters on the performance of the PEM fuel cell. It is observed that liquid water appears originally in the cathodic catalyst layer over outlet channel under intermediate current and tends to be distributed uniformly by the capillary force with the increase of the current. It is found that reduction of the width of outlet channel can enhance the performance of PEM fuel cell via the increase of the current density over this region, which has, seemingly, not been discussed in previous literatures.  相似文献   

13.
Gas diffusion layers (GDL) are one of the important parts of the PEM fuel cell as they serve to transport the reactant gases to the catalyst layer. Porosity of this layer has a large effect on the PEM fuel cell performance. The spatial variation in porosity arises due to two effects: (1) compression of the electrode on the solid landing areas and (2) water produced at the cathode side of gas diffusion layers. Both of these factors change the porosity of gas diffusion layers and affect the fuel cell performance. To implement this performance analysis, a mathematical model which considers oxygen and hydrogen mass fraction in gas diffusion layer and the electrical current density in the catalyst layer, and the fuel cell potentials are investigated. The porosity variation in the GDL is calculated by considering the applied pressure and the amount of the water generated in the cell. The validity of the model is approved by comparing the computed results with experimental data. The obtained results show that the decrease in the average porosity causes the reduction in oxygen consumption, so that a lower electrical current density is generated. It is also shown that when the electrical current density is low, the porosity variation in gas diffusion layer has no significant influence on the level of polarization whereas at higher current density the influence is very significant. The porosity variation causes non-uniformity in the mass transport which in turn reduces the current density and a lower fuel cell performance is obtained.  相似文献   

14.
Past studies have shown that both the substrate and microporous layer of the gas diffusion layer (GDL) significantly affect water balance and performance of a proton exchange membrane (PEM) fuel cell. However, little effort has been made to investigate the importance of GDL properties on the durability of PEM fuel cells. In this study, the in situ degradation behaviour of a commercial GDL carbon fiber paper with MPL was investigated under a combination of elevated temperature and elevated flow rate conditions. To avoid the possible impact of the catalyst layer during degradation test, different barriers without catalyst were utilized individually to isolate the anode and cathode GDLs. Three different barriers were evaluated on their ability to isolate GDL degradation and their similarity to a fuel cell environment, and finally a novel Nafion/MPL/polyimide barrier was chosen. Characterization of the degraded GDL samples was conducted through the use of various diagnostic methods, including through-plane electrical resistivity measurements, mercury porosimetry, relative humidity sensitivity, and single-cell performance curves. Noticeable decreases in electrical resistivity and the hydrophobic properties were detected for the degraded GDL samples. The experimental results suggested that material loss plays an important role in GDL degradation mechanisms, while excessive mechanical stress prior to degradation weakens the GDL structure and changes its physical property, which consequently accelerates the material loss of the GDL during aging.  相似文献   

15.
Water content in the membrane and the presence of liquid water in the catalyst layers (CL) and the gas diffusion layers (GDL) play a very important role in the performance of a PEM fuel cell. To study water transport in a PEM fuel cell, a two‐phase flow mathematical model is developed. This model couples the continuity equation, momentum conservative equation, species conservative equation, and water transport equation in the membrane. The modeling results of fuel cell performances agree well with measured experimental results. Then this model is used to simulate water transport and current density distribution in the cathode of a PEM fuel cell. The effects of operating pressure, cell temperature, and humidification temperatures on the net water transfer through the membrane, liquid water saturation, and current density distribution are studied. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(2): 89–100, 2006; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20107  相似文献   

16.
Water management in a PEM fuel cell significantly affects the fuel cell performance and durability. The gas diffusion layer (GDL) of a PEM fuel cell plays a critical role in the water management process. In this short communication, we report a simple method to measure the water transport rate across the GDL. Water rejection rates across a GDL at different cathode air-flow rates were measured. Based on the measurement results, the fuel cell operating conditions, such as current density, temperature, air stoichiometry and relative humidity, corresponding to membrane drying and flooding conditions were identified for the particular GDL used. This method can help researchers develop GDLs for a particular fuel cell design with specific operating conditions and optimize the operation conditions for the given PEM fuel cell components.  相似文献   

17.
A two-dimensional steady state model for a PEM fuel cell cathode is described in this work. All the components in the cathode such as the gas manifold, diffusion layer, microporous layer and the catalyst layer are modeled. The effect of the liquid water is taken into account in every layer of the cathode. The model was developed and simulated using a combination of Maple and MATLAB. The combination provides a flexible framework for quickly developing models with various assumptions and different complexities. The cathode catalyst layer was modeled using both macrohomogeneous and spherical agglomerate characterizations. The model is validated using experimental data. During model validation, various assumptions are considered for transport within the porous layers of the cathode. Subsequently, the assumptions and characteristics that best predicts the experimental data are highlighted. The major conclusion of this work is that a model that includes liquid water in all the layers with a flooded spherical agglomerate characterization for the reaction layer best predicts the PEM fuel cell behavior in terms of an iv characterization for a wide range of reactant flow rates. The utility of the steady state model for the optimization of the cathode catalyst layer design parameters is also described.  相似文献   

18.
《Journal of power sources》2006,159(1):468-477
The objective of this work is to examine the effects of humidity of reactant fuel at the inlet on the detailed gas transport and cell performance of the PEM fuel cell with baffle-blocked flow field designs. It is expected that, due to the water management problem, the effects of inlet humidity of reactant fuel gases on both anode and cathode sides on the cell performance are considerable. In addition, the effects of baffle numbers on the detailed transport phenomena of the PEM fuel cell with baffle-blocked flow field are examined. Due to the blockage effects in the presence of the baffles, more fuel gas in the flow channel can be forced into the gas diffuser layer (GDL) and catalyst layer (CL) to enhance the chemical reactions and then augment the performance of the PEMFC systems. Effect of liquid water formation on the reactant gas transport is taken into account in the numerical modeling. Predictions show that the local transport of the reactant gas, the local current density generation and the cell performance can be enhanced by the presence of the baffles. Physical interpretation for the difference in the inlet relative humidity (RH) effects at high and low operating voltages is presented. Results reveal that, at low voltage conditions, the liquid water effect is especially significant and should be considered in the modeling. The cell performance can be enhanced at a higher inlet relative humidity, by which the occurrence of the mass transport loss can be delayed with the limiting current density raised considerably.  相似文献   

19.
《Journal of power sources》2006,158(1):143-147
As long as the perfluorinated proton exchange membrane (PEM) is used for the electrolyte, both the cell performance and life are highly dependent upon the water content in the electrolyte. On the other hand, pre-humidification of fuel and oxidant gases complicates the PEMFC system and prevents it from possible cost reduction measures. In this study, in order to maintain a membrane electrode assembly (MEA) with a satisfactory water content by only the water produced in catalyst layer through the electrode reaction without prior humidification of both the fuel and oxidant gases, a novel gas diffusion layer (GDL) was fabricated. This was achieved by coating a water management layer (WML) onto a traditional GDL in order to place the WML between the traditional GDL and the catalyst layer of the PEMFC. This study describes the significant balance of water with WML in the fuel cell using both simulation and experimental analysis.  相似文献   

20.
The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air–water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号