首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structural features of chars derived from pyrolysis of mallee wood of different particle sizes in a novel fluidized-bed/fixed-bed reactor have been investigated. Raman spectroscopy was used for structural evaluation of chars. Spectra were curve-fitted with 10 Gaussian bands representing typical structural features of the chars. The temperature had a significant influence on the evolution of char structure and thus the total Raman peak area between 800 and 1800 cm− 1 is seen to decrease significantly with increasing pyrolysis temperature for all chars. On the other hand, the ratio ID/I(Gr + Vl + Vr) between the band intensities of condensed aromatic ring systems (> 6 rings) and amorphous char structures with small aromatic ring (3-5 rings) systems is seen to increase with increasing temperature. The particle size of biomass has a great role in char structure at fast heating rate (> 1000 °C/s) pyrolysis although it has no effect on char structure at slow heating rate pyrolysis (0.17 °C/s). However, in the bigger biomass particle, the structure of char prepared under fast heating rate pyrolysis is similar to that of the structure of char prepared under slow heating rate pyrolysis.  相似文献   

2.
Dimple Mody Quyn  Chun-Zhu Li 《Fuel》2003,82(5):587-593
The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates (-COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400 °C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates (-COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700 °C and then decreased with pyrolysis temperature from 700 to 900 °C. The increase in reactivity with pyrolysis temperature (500-700 °C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification.  相似文献   

3.
The protein poly-l-leucine has been used as a model compound for the nitrogen in biomass fuels. It was pyrolysed in a fluidised bed at 700 and 800 °C and the pyrolysis gases were analysed with a FT-IR spectrometer. HCN, NH3 and HNCO were identified as the main nitrogen-containing species, while neither NO nor N2O were found among the pyrolysis gases. At 700 °C, as much as 58% of the nitrogen content was converted into HCN and 31% into NH3. The HCN/NH3 ratio increased from about 1.9 at 700 °C to above 2.2 at 800 °C. Pyrolysis of another protein, poly-l-proline, at 800 °C gave a HCN/NH3 ratio close to 10. This revealed that the protein's amino acid composition has a marked impact on the composition of the pyrolysate.  相似文献   

4.
Char reactivity is an important factor influencing the efficiency of a gasification process. As a low-rank fuel, Victorian brown coal with high gasification reactivity is especially suitable for use with gasification-based technologies. In this study, a Victorian brown coal was gasified at 800 °C in a fluidised-bed/fixed-bed reactor. Two different gasifying agents were used, which were 4000 ppm O2 balanced with argon and pure CO2. The chars produced at different gasification conversion levels were further analysed with a thermogravimetric analyser (TGA) at 400 °C in air for their reactivities. The structural features of these chars were also characterised with FT-Raman/IR spectroscopy. The contents of alkali and alkaline earth metallic species in these chars were quantified. The reactivities of the chars prepared from the gasification in pure CO2 at 800 °C were of a much higher magnitude than those obtained for the chars prepared from the gasification in 4000 ppm O2 also at 800 °C. Even though both atmospheres (i.e. 4000 ppm O2 and pure CO2) are oxidising conditions, the results indicate that the reaction mechanisms for the gasification of brown coal char at 800 °C in these two gasifying atmospheres are different. FT-Raman/IR results showed that the char structure has been changed drastically during the gasification process.  相似文献   

5.
D.M. Mackay  P.V. Roberts 《Carbon》1982,20(2):105-111
Prune pit chars prepared by pyrolysis at heating rates of 1 and 15°C/min to 500, 700 and 900°C were subsequently gasified by exposure to CO2 at 900°C for various lengths of time. Gasification rate was found to be dependent on the conditions during pyrolysis: slow heating below 500°C and prolonged exposure to high temperatures (~900°C) during pyrolysis in an inert atmosphere lead to lower rate gasification. Despite differences in gasification rate, the pore structure developed for a given mass loss due to the gasification reactions was apparently independent of the char preparation conditions. Pore volume in the gasified char (expressed on an absolute basis) passed through a maximum at 40–50% burnoff, apparently due to mass loss from the exterior of the particles.  相似文献   

6.
The fate of the chlorine and fluorine present in a sub-bituminous coal from Indonesia during pyrolysis and gasification has been studied with fixed and entrained bed reactors. The rate profile for HCl evolved in the temperature programmed pyrolysis exhibits the main and shoulder peaks at 480 and 600 °C, respectively. Model experiments and subsequent Cl 2p XPS measurements show that HCl reacts with metal impurities and carbon active sites at 500 °C to be retained as inorganic and organic chlorine forms, from which HCl evolves again at elevated temperatures. It is suggested that the HCl observed in the coal pyrolysis may originate from the above-mentioned chlorine functionalities formed by secondary reactions involving the nascent char. In the CO2 gasification of the 900 °C char at 1000 °C and 2.5 MPa, any measurable amounts of HCl and HF could not be detected even at a high conversion of 75 wt% (daf), suggesting the accumulation of these halogens in the residual char. When the coal is injected into an O2-blown, entrained bed gasifier at 1200-1400 °C under 2.6 MPa, the partial oxidation proceeds to a larger extent at a higher O2/coal ratio, whereas the chlorine and fluorine are enriched in the remaining char, and the extent of the enrichment at the latter stage of gasification is larger with the fluorine. The XPS measurements of the chars reveal the presence of the broad F 1 s peak, which can cover a wide range of binding energies attributable to inorganic and organic fluorine. The halogen enrichment during gasification is discussed in terms of secondary reactions of HCl and HF with char.  相似文献   

7.
In this study, the feasible use of ozone to form oxygen complexes in chars prepared from cherry stones (CS) is investigated. CS were charred at 450, 600 or 900°C for 2 h in nitrogen. Char samples were ozonated over the 25-250°C temperature range for 1 h. Elemental chemical analysis was effected for a few selected samples. The oxygen complexes were successfully analyzed by Fourier infrared spectroscopy (FT-IR) and by titration methods. Thermal decomposition of ozone in the gas stream was also studied and the mechanism of the ozonation process dealt with. The ozonation treatment of CS chars was found to yield products with a relatively high concentration of a number of oxygen complexes. These include phenolic hydroxyl, quinonic, carboxylic acid, and ether structures. The content of lactonic structures was very low in the ozonated samples. The type and quantity of oxygen complexes depended on the ozonation and charring temperatures. The formation of oxygen complexes was favored when the charring of CS was effected at 450°C and when the ozonation of the char prepared at 600°C was performed at 100°C. The ozone content in the gas stream was very sensitive to the temperature increase in the reactor. Several reaction routes have been proposed for the transformation of ether, aromatic, and olefinic structures present in CS chars into oxygen complexes.  相似文献   

8.
The purpose of this study was to investigate the influence of the method of adsorption of N2 at − 196 °C on the isotherm obtained for, and hence derived textural parameters of, a wide series of carbonaceous materials (CM). Two pyrolyzed products, six activated carbons and two carbon blacks were used. The carbonized products were prepared by pyrolysis of cherry stones at 600 or 900 °C in nitrogen atmosphere (P-600, P-900). Three activated carbons were made by activation of P-600 at 275 °C in air and of P-900 at 850 °C in carbon dioxide or steam, whereas the remaining CM were commercial products. The adsorption isotherms for N2 at − 196 °C were determined by static and dynamic methods in Quantachrome equipments. The CM were further characterized texturally by means of mercury porosimetry and helium and mercury density measurements. Because of the presence of helium in the adsorptive gas stream, the adsorption of nitrogen noticeably decreases for the CM containing micropores obstructed with tarry products (i.e. P-600 and the activated carbon prepared from it by air activation). For the rest of the activated carbons the adsorption increases, as they must possess narrow micropores having easier access to N2 at − 196 °C. Helium causes a decrease in the degree of interaction between the nitrogen molecules in the gas stream and as a result the diffusion of nitrogen in pores of the adsorbent increases. For the carbon blacks, however, helium hardly affects the adsorption of nitrogen, except for at high relative pressures of this gas. Helium also influences the capillary condensation phenomenon occurring in mesopores. The variation percentages in the micro- and mesopore volumes are as high as 20 and 50, respectively. Such percentages as a rule are higher for the activated carbons.  相似文献   

9.
《Fuel》2006,85(10-11):1509-1517
FT-IR/Raman spectroscopies have been used to identify the structural features of Victorian brown coal chars during the gasification in air at 400 °C. The deconvolution of the Raman spectra has allowed us to identify the main structural sites in char where preferential reaction with O2 takes place. The presence of Na and Ca catalysts is shown to alter the reaction pathways between char and O2. In the absence of a catalyst, the O-containing functional groups formed in char during gasification were closely associated with the aromatic structure and thus tended to loosen the aromatic structure. The non-catalysed gasification was slow and took place on some specific (especially sp3-rich or sp2–sp3 mixture) sites distributed throughout the char. In the presence of a catalyst (Na or Ca), the O-containing functional groups were not closely associated with the main aromatic structure throughout the char. The catalytic gasification reactions were localised on the sites associated with the catalysts. The preferential removal of smaller aromatic ring systems and the persistence of cross-linking structures in the presence of a catalyst mean that the large aromatic ring systems were increasingly concentrated with little flexibility, affecting the dispersion of catalyst.  相似文献   

10.
Masakazu Sakaguchi 《Fuel》2010,89(10):3078-3084
A slurry of bio-oil and char originating from wood pyrolysis is a promising gasifier feed-stock because of its high energy density. When such a slurry is injected into a high temperature gasifier it undergoes a rapid pyrolysis yielding a char which then reacts with steam. The char produced by pyrolysis of an 80 wt% bio-oil/20 wt% char mixture at heating rates of 100-10,000 °C/s was subjected to steam gasification in a thermogravimetric analyzer. The original wood char from the bio-oil production was also tested. Gasification was conducted with 10-50 mol% steam at temperatures from 800 to 1200 °C. Reactivity of the slurry chars increased with pyrolysis heating rate, but was lower than that of the original chars. Kinetic parameters were established for a power-law rate model of the steam-char reaction, and compared to values from the literature. At temperatures over 1000 °C, the gasification rates appeared to be affected by diffusional resistance.  相似文献   

11.
Daniel M. Keown  Chun-Zhu Li 《Fuel》2008,87(7):1127-1132
An Australian cane trash biomass was pyrolysed by heating at a slow heating rate to 700-900 °C in an inert gas atmosphere. The chars were then gasified in situ with steam. Our results indicate that the gasification of char with steam, even only for 20 s when the char conversion was minimal, resulted in drastic reduction in the intrinsic reactivity of char with air at 400 °C. The decreases in the char reactivity were not mainly due to the possible volatilisation of inherent catalysts during gasification in steam. Instead, the FT-Raman spectroscopy of the chars showed that the gasification of char with steam resulted in drastic changes in char structure including the transformation of smaller ring systems (3-5 fused rings) to large ring systems (?6 fused rings). It is believed that the intermediates of char-steam reactions, especially H, penetrated deep into the char matrix to induce the ring condensation reactions.  相似文献   

12.
In the present study, one process was selected for a fundamental study of structural evolution during rapid pyrolysis, as well as for the study of the influence of such evolution on char reactivity. Chars were prepared at different situations from rice husk. The reactivity of resultant chars was measured using non-isothermal thermogravimetric analysis. The structure of fresh and partly reacted chars was characterized using proximate and ultimate analyses, physical adsorption/desorption measurements of N2 (− 196 °C), mercury intrusion porosimetry (414 MPa), FTIR, Helium pycnometer as well as samples visualization by scanning electronic microscopy (SEM). Appreciable differences in the physical characteristics, depending markedly on the pyrolysis stage, were observed.  相似文献   

13.
Onakawana lignite was gasified in air, steam and an air + steam mixture in a fixed bed reactor. The extent of devolatilization was determined by pyrolysis in nitrogen. The composition of products, expressed in terms of H2/CO ratio, was temperature dependent. The ratio decreased with increasing temperature. During steam gasification the ratio decreased from 4.6 to 2.6 when temperature increased from 700° to 990°C. The addition of air to steam resulted in a marked decrease of this ratio. Steam gasification reactivity of chars prepared from Onakawana lignite at 500°C and 800°C were studied in the temperature range of 650°C to 1000°C. The carbon conversion results were fitted into equations describing the continuous and shrinking core models. The char prepared at 500°C was much more reactive than the one prepared at 800°C. Product distribution expressed as the H2/CO ratio, was favourable in the temperature range. For comparison, the Kentucky #9 coal and chars derived from this coal were used as referee materials. The reactivity of these chars was markedly lower than that of chars derived from Onakawana lignite.  相似文献   

14.
The aim of this study is to investigate the co-combustion behavior of two different pyrolytic chars. For this purpose, Elbistan lignite and woody shells of hazelnut were pyrolysed in a tube furnace by heating to 900 °C with a heating rate of 40 °C min− 1 under dynamic nitrogen flow of 400 mL min− 1 to obtain pyrolytic char. These chars were mixed to obtain blends having the biomass char in the ratios of 5, 10, and 20 wt.%. Non-isothermal DTA and TGA profiles of the chars were obtained from ambient to 900 °C with a heating rate of 40 °C min− 1 under the static ambient atmosphere. DTA and TGA profiles of the blend chars were interpreted considering the thermal characteristics such as ignition point, burnout at a given temperature, maximum burning rate, the end of combustion etc. Relations between the fraction of the biomass char in the blends and the thermal behavior of the blends were evaluated according to the synergistic approach. It was found that addition of biomass char led to important variations in some thermal properties which can not be explained by the additive behavior. However it can be concluded in general that the combinations of synergistic interactions and additive behavior govern the thermal properties of the blend chars during co-oxidation.  相似文献   

15.
Isothermal treatments of the polyaramid fiber, [poly(p-phenylene terephthalamide)] (PPTA) in an inert atmosphere below its decomposition temperature are known to induce an important increase in char yield and modify the chemical composition and some other properties of the resulting chars. The objective of this work was to study the effect of this isothermal stage on the porous texture of chars and activated carbon fibers (ACFs) produced from PPTA. To this end, chars and ACFs were prepared by PPTA pyrolysis to 850 °C followed by CO2 activation at 800 °C to various burn-offs (BOs), introducing or not an intermediate isothermal pre-treatment under the conditions (500 °C, 200 min) known to lead to a maximum increase in char yield. The porosity characteristics of the resulting chars and ACFs were comparatively investigated by adsorption of CO2 (0 °C), and N2 (−196 °C). The isothermal stage led to a char with enhanced micropore volume and wider micropores. The ACFs prepared from this char exhibited larger amounts of wide micropores and mesopores than those prepared from PPTA pyrolyzed at a constant heating rate.  相似文献   

16.
Catalytic gasification of char from co-pyrolysis of coal and biomass   总被引:1,自引:0,他引:1  
The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO2, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 °C have the highest alkali concentration and reactivity.  相似文献   

17.
《Fuel》2006,85(12-13):1700-1707
FT-Raman spectroscopy with a 1064 nm laser was used to investigate chemical structural changes of char during the pyrolysis of Victorian Loy Yang brown coal samples. The chars were diluted with KBr in order to record Raman spectra with acceptable quality. The interpretation of the Raman spectral data for these highly disordered and heterogeneous chars differs distinctly from that for the highly condensed/graphitised carbon materials. The FT-Raman spectra of chars in this study over the range of 800–1800 cm−1 were curve-fitted with 10 bands representing major structures in the chars. This has given information about the size of aromatic rings and the nature of substitutional groups and cross-links in char. The observed Raman intensity of a char is governed by its Raman scattering ability and its light absorptivity for both excitation laser and Raman scattering. The overall Raman intensity (peak area) as well as the ratios among the intensities of some major Raman bands has allowed some semi-quantitative evaluation of changes in char structure with increasing temperature during pyrolysis. The presence of ion-exchangeable Na and Ca in brown coal greatly affects the char-forming reactions during pyrolysis.  相似文献   

18.
Gasification of a char prepared from hydrocracked residuum was compared with the gasification of chars prepared from bituminous and sub-bituminous Canadian coals, wood and graphite. Each material was mixed with 10 mass per cent K2CO3 and pyrolyzed up to 900°C. The yield of char was inversely proportional to the amount of volatile matter in the original material. The char prepared from hydrocracked residuum was different from the others. The other chars all followed zero-order gasification kinetics. Gasification of char prepared from the residuum was first-order in the solid. The development of a liquid phase during the pyrolysis of the residuum to char may explain this difference. The gasification rate of the char. from residuum was slower than the rates with the two coal chars and the wood char, but faster than the gasification rate of graphite. A combination of transient experiments and X-ray photoelectron spectroscopic (XPS) measurements indicated that hydrogen was formed almost instantaneously when steam reacted with the char. XPS spectra at liquid nitrogen temperature indicated that during gasification the formation of carbon oxygen bonds proceeded in the following sequence: COH, CO and CO.  相似文献   

19.
Z. Abu El-Rub  E.A. Bramer  G. Brem   《Fuel》2008,87(10-11):2243-2252
In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed tubular reactor at a temperature range of 700–900 °C under atmospheric pressure and a gas residence time in the empty catalyst bed of 0.3 s. Biomass chars are compared with calcined dolomite, olivine, used fluid catalytic cracking (FCC) catalyst, biomass ash and commercial nickel catalyst. The conversion of naphthalene and phenol over these catalysts was carried out in the atmosphere of CO2 and steam. At 900 °C, the conversion of phenol was dominated by thermal cracking whereas naphthalene conversion was dominated by catalytic conversion. Biomass chars gave the highest naphthalene conversion among the low cost catalysts used for tar removal. Further, biomass char is produced continuously during the gasification process, while the other catalysts undergo deactivation. A simple first order kinetic model is used to describe the naphthalene conversion with biomass char.  相似文献   

20.
Abdelilah Alla 《Polymer》2005,46(9):2854-2861
A series of polyamides 6,4 were prepared from 1,6-hexanediamine and active esters of 2,3-di-O-acylated l-tartaric acid by polycondensation in solution. Both O-alkoyl and O-benzoyl esters were used as hydroxyl protecting groups. The resulting acylated polytartaramides were found to be semicrystalline polymers with Tm between 100 and 200 °C and Tg slightly above 100 °C. Controlled hydrolysis of the ester side group led to the preparation of poly(hexamethylene l-tartaramide)s with different content in free hydroxyl groups. These polyamides continue being crystalline but their properties largely differ from those displayed by their parent acylated polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号