首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon Nano Fibers (CNFs) coated with LiFePO4 particles have been prepared by a non-aqueous sol–gel technique. The functionalization of the CNFs by HNO3 acid treatment has been confirmed by Raman and XPS analyses. The samples pure LiFePO4 and LiFePO4–CNF have been characterized by XRD, SEM, RAMAN, XPS and electrochemical analysis. The LiFePO4–CNF sample shows better electrochemical performance compared to as-prepared LiFePO4. LiFePO4–CNF (10 wt.%) delivers a higher specific capacity (∼140 mAh g−1) than LiFePO4 with carbon black (25 wt.%) added after synthesis (∼120 mAh g−1) at 0.1C.  相似文献   

2.
Porous nanostructured LiFePO4 powder with a narrow particle size distribution (100–300 nm) for high rate lithium-ion battery cathode application was obtained using an ethanol based sol–gel route employing lauric acid as a surfactant. The synthesized LiFePO4 powders comprised of agglomerates of crystallites <65 nm in diameter exhibiting a specific surface area ranging from 8 m2 g−1 to 36 m2 g−1 depending on the absence or presence of the surfactant. The LiFePO4 obtained using lauric acid resulted in a specific capacity of 123 mAh g−1 and 157 mAh g−1 at discharge rates of 10C and 1C with less than 0.08% fade per cycle, respectively. Structural and microstructural characterization were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray (EDX) analysis while electronic conductivity and specific surface area were determined using four-point probe and N2 adsorption techniques.  相似文献   

3.
A novel preparation technique was developed for synthesizing carbon-coated LiFePO4 nanoparticles through a combination of spray pyrolysis (SP) with wet ball milling (WBM) followed by heat treatment. Using this technique, the preparation of carbon-coated LiFePO4 nanoparticles was investigated for a wide range of process parameters such as ball-milling time and ball-to-powder ratio. The effect of process parameters on the physical and electrochemical properties of the LiFePO4/C composite was then discussed through the results of X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the Brunauer-Emmet-Teller (BET) method and the use of an electrochemical cell of Li|1 M LiClO4 in EC:DEC = 1:1|LiFePO4. The carbon-coated LiFePO4 nanoparticles were prepared at 500 °C by SP and then milled at a rotating speed of 800 rpm, a ball-to-powder ratio of 40/0.5 and a ball-milling time of 3 h in an Ar atmosphere followed by heat treatment at 600 °C for 4 h in a N2 + 3% H2 atmosphere. SEM observation revealed that the particle size of LiFePO4 was significantly affected by the process parameters. Furthermore, TEM observation revealed that the LiFePO4 nanoparticles with a geometric mean diameter of 146 nm were coated with a thin carbon layer of several nanometers by the present method. Electrochemical measurement demonstrated that cells containing carbon-coated LiFePO4 nanoparticles could deliver markedly improved battery performance in terms of discharge capacity, cycling stability and rate capability. The cells exhibited first discharge capacities of 165 mAh g−1 at 0.1 C, 130 mAh g−1 at 5 C, 105 mAh g−1 at 20 C and 75 mAh g−1 at 60 C with no capacity fading after 100 cycles.  相似文献   

4.
Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g−1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g−1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO4//Li4Ti5O12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and electrochemical performance of the Li-ion battery can be improved by using mixed IL and organic solvents.  相似文献   

5.
An order olivine structure LiFePO4 was synthesized with a simple rheological phase reaction (RPR) of LiOH·H2O and FePO4·4H2O in the presence of PEG as a reductive agent and carbon source. A required amount of water was added to the starting materials to form the rheological precursor and decomposed at 700 °C to form the crystalline phase LiFePO4 directly, without ball-milling, preparation of intermediates, pre-sintering and post-deposition treatment. Fine particles with an average particle size about 216 nm are examined by scanning electron microscopy (SEM) and optical particle size analyzer. An initial discharge capacity of 157 mAh g−1 was achieved for the as-prepared LiFePO4 material with a rate of 0.1C (17 mA g−1), what's more, this material shows excellent specific capacity, charge–discharge efficiency and cycle efficiency at high current rates, almost no capacity loss can be observed up to 40 cycles with the rate of 1, 2 and 3C at room temperature. The simple, cheap process as well as the excellent high-rate performance makes this RPR method feasible commercially.  相似文献   

6.
Spherical-like LiFePO4 was synthesized by hydrothermal synthesis method using Phenanthroline as a complexing-agent to avoid the Fe(II) ions from oxidation and control the growth of the crystal. Structural, electron valence state, morphology and particle size were investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Mössbauer spectra, scanning electron microscopy (SEM) and laser particle sizer. Charge–discharge cycling performances were used to characterize its electrochemical properties. The sample possesses uniformly distributed spherical-like particles with an average size of 0.5–1 μm. Test shows that the reversible capacity of spherical-like LiFePO4 is about 140 mAh g−1 at 0.1 C. The capacity fading is neglectable.  相似文献   

7.
Pure Si platelets and Ni or Cu layer-laminated Si platelets with difference thickness were prepared, and their charge/discharge properties were examined in 1 M LiClO4/EC + DEC (1:1 by volume) as alternative negative electrode materials to graphite for Li-ion batteries. The shape of thin platelets and lamination with Ni layer are significantly effective to improve the cycleability in Li-Si alloy system by relieving the stress during the alloying/de-alloying processes, reinforcing the mechanical strength and reducing the Li+ ion diffusion length. Moreover, the first irreversible capacity is minimized by reduction of the amount of Ketjen Black (KB) in the composite electrode because of electrolyte decomposition on the surface of KB. Consequently, the Si/Ni/Si-LP30 (30/30/30 nm) composite electrode with 5 wt% KB also exhibits over 700 mAh g−1 even after 50 cycles in 1 M LiPF6/EC + DEC (1:1).  相似文献   

8.
LiFePO4/carbon composite electrode was prepared and applied to the dry polymer electrolyte. Enhanced low-temperature performance of LiFePO4 was achieved by modifying the interface between LiFePO4 and polymer electrolyte. The molecular weight of the polymer and the salt concentration as the Li/O ratio were optimized at 3 × 105 and 1/10, respectively. Impedance analysis revealed that a small resistive component occurred in the frequency range of the charge transfer process. The reversible capacity of the laminate cell was 140 mAh g−1 (C/20) and 110 mAh g−1 (C/2) at 40 °C, which is comparable to the performance in the liquid electrolyte system.  相似文献   

9.
Chemical lithiation with LiI in acetonitrile was performed for amorphous FePO4 synthesized from an equimolar aqueous suspension of iron powder and an aqueous solution of P2O5. An orthorhombic LiFePO4 olivine structure was obtained by annealing a chemically lithiated sample at 550 °C for 5 h in Ar atmosphere. The average particle size remained at approximately 250 nm even after annealing. The lithium content in the sample was quantitatively confirmed by Li atomic absorption analysis and 57Fe Mössbauer spectroscopy. While an amorphous FePO4/carbon composite cathode has a monotonously decreasing charge–discharge profile with a reversible capacity of more than 140 mAh g−1, the crystallized LiFePO4/carbon composite shows a 3.4 V plateau corresponding to a two-phase reaction. This means that the lithium in the chemically lithiated sample is electrochemically active. Both amorphous FePO4 and the chemically lithiated and annealed crystalline LiFePO4 cathode materials showed good cyclability (more than 140 mAh g−1 at the 40th cycle) and good discharge rate capability (more than 100 mAh g−1 at 5.0 mA cm−2). In addition, the fast-charge performance was found to be comparable to that with LiCoO2.  相似文献   

10.
Phospho-olivine LiFePO4 cathode materials were prepared by hydrothermal reaction at 150 °C. Carbon black was added to enhance the electrical conductivity of LiFePO4. LiFePO4-C powders (0, 3, 5 and 10 wt.%) were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). LiFePO4-C/solid polymer electrolyte (SPE)/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of 0.1 mA cm−2 in a range between 2.5 and 4.3 V vs. Li/Li+, cyclic voltammetry (CV) and ac impedance spectroscopy. The results showed that initial discharge capacity of LiFePO4 was 104 mAh g−1. The discharge capacity of LiFePO4-C/SPE/Li cell with 5 wt.% carbon black was 128 mAh g−1 at the first cycle and 127 mAh g−1 after 30 cycles, respectively. It was demonstrated that cycling performance of LiFePO4-C/SPE/Li cells was better than that of LiFePO4/SPE/Li cells.  相似文献   

11.
Well-crystallized LiFePO4 nanoparticles have been directly synthesized in a short time via hydrothermal process in the presence of organic acid, e.g. citric acid or ascorbic acid. These acid-mediated LiFePO4 products exhibit a phase-pure and nanocrystal nature with size about 50-100 nm. Two critical roles that the organic acid mediator plays in hydrothermal process are recognized and a rational mechanism is explored. After a post carbon-coating treatment at 600 °C for 1 h, these mediated LiFePO4 materials show a high electrochemical activity in terms of reversible capacity, cycling stability and rate capability. Particularly, LiFePO4 mediated by ascorbic acid can deliver a capacity of 162 mAh g−1 at 0.1 C, 154 mAh g−1 at 1 C, and 122 mAh g−1 at 5 C. The crystalline structure, particle morphology, and surface microstructure were characterized by high-energy synchrotron X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and Raman spectroscopy, respectively. And the electrochemical properties were thoroughly investigated by galvanostatic test and electrochemical impedance spectroscopy (EIS).  相似文献   

12.
One-dimensional (1D) nanosize electrode materials of lithium iron phosphate (LiFePO4) nanowires and Co3O4–carbon nanotube composites were synthesized by the hydrothermal method. The as-prepared 1D nanostructures were structurally characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. We tested the electrochemical properties of LiFePO4 nanowires as cathode and Co3O4–carbon nanotubes as anode in lithium-ion cells, via cyclic voltammetry and galvanostatic charge/discharge cycling. LiFePO4 nanorod cathode demonstrated a stable performance over 70 cycles, with a remained specific capacity of 140 mAh g−1. Nanocrystalline Co3O4–carbon nanotube composite anode exhibited a reversible lithium storage capacity of 510 mAh g−1 over 50 cycles. 1D nanostructured electrode materials showed strong potential for lithium-ion batteries due to their good electrochemical performance.  相似文献   

13.
A novel polymer electrolyte based on triblock copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) with ionically active SiO2 inclusions has been designed. The electrolyte shows favorable features for ion migration such as low glass transition temperature and high concentration of amorphous phase. Combined with the effect of active SiO2, its ionic conductivity is about 8.0 × 10−5 S cm−1 at 30 °C, which exceeds that for the PEO-based systems. As applying them to cells with LiFePO4-type cathodes, a capacity of about 147.0 mAh g−1 is obtained at 60 °C, which is retained by more than 90% after 40 charge/discharge cycles. Moreover, about 100 mAh g−1 could still be delivered as temperature decreases to 30 °C.  相似文献   

14.
LiFePO4 (LFP) particles were obtained by grinding ingot synthesized in the molten state. This process, followed by jet milling, and then wet milling, provides a simple way to obtain powders with controlled particle size in the range from macroscopic to 25 nm. However, at this time, we find that these particles tend to agglomerate to form secondary particles of size ∼100 nm. The particles obtained by this process are characterized by X-ray diffraction (XRD). In situ and ex situ scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of milling was also investigated by analysis of physical properties using infrared spectroscopy (FTIR) and magnetic measurements. The electrochemical performance was evaluated in cells containing Li/1 M LiPF6 in EC:DEC (1:1)/C-LiFePO4. After carbon coating, the LFP particles which are free of impurities, exhibit high-rate capability. Even with a limited amount of carbon (2 wt.%) appropriate for commercial batteries, the capacity is 157 mAh g−1 at 0.1 C, 120 mAh g−1 at 10 C, without capacity fading after 60 cycles.  相似文献   

15.
Carbon coated LiFePO4 (LiFePO4/C) with different contents of high electron conductive iron phosphide phase was synthesized by an aqueous sol–gel method in a reductive sintering atmosphere. Different synthesis parameters were used for adjusting the microstructure and phase compositions of the products. The effects of the carbon coating and iron phosphides on the electrochemical properties of the LiFePO4/C electrodes were studied by means of testing the discharge capacities at rates of 0.1–5C (1C = 170 mAh g−1) and analyzing the CV curves. The results show that carbon coating in a content of 1.5 wt.% derived from the carbon source of ethylene glycol greatly decreases the particle size of LiFePO4 in one order in the specific surface area, and significantly improves the rate capability of LiFePO4. The effect of the content of FeP on the capacity of the carbon coated LiFePO4 was different at different discharge rates. Increasing the content of FeP from 1.2 to 3.7 wt.% slightly decreases the capacity of LiFePO4/C at low discharge rate (0.1C and 1C), but obviously increases the capacity of LiFePO4/C when the discharge rate is increased to 5C. For the carbon free sample, even it also has 1.8 wt.% FeP, it still possesses poor capacity due to the large particle size of LiFePO4 and the lack of conductivity. And too much iron phosphides lowers the discharge capacity of the electrode since they are inert for the deinsertion/insertion of lithium ion.  相似文献   

16.
17.
Composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1–2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550–600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm−1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g−1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.  相似文献   

18.
Non-flammable polymer gel electrolytes (NPGE) consisting of 1.0 mol dm−3 (=M) LiBF4/EC + DEC + TEP (55:25:20 volume ratio) + PVdF-HFP (EC: ethylene carbonate, DEC: diethyl carbonate, TEP: triethylphosphate, PVdF-HFP: poly(vinyledenefluoride-co-hexafluoropropylene)) have been developed for rechargeable lithium batteries. The effects of addition of Lewis-acid polymer (LAP) with different mole ratio in NPGE have been studied. The addition of LAP improved physico-chemical properties of NPGE, viz ionic conductivity and lithium ion transport number, as well as mechanical and thermal properties. The ionic conductivity of the gel electrolyte containing LAP reached that of the base solution electrolyte (1.0 M LiBF4/EC + DEC + TEP (55:25:20)) along with better mechanical properties. Interfacial resistance at Li-metal electrode/NPGE was also improved by introducing LAP in the gel.  相似文献   

19.
For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn2O4-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16–20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF6 in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at −60 °C using a C/20 discharge rate with cells containing 1.0 M LiPF6 in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF6 in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at −40 °C, while still maintaining a voltage >2.5 V at 100 and 80% state-of-charge (SOC).  相似文献   

20.
Carbon-doped TiO2 nanotubes were synthesized through a sol–gel and subsequent hydrothermal process. Transmission electron microscopy and X-ray diffraction showed that the products are uniformly straight tubes with the diameter around 10 nm in anatase-type. The electrochemical performances of the nanotubes were tested by constant current discharge/charge, cyclic voltammetry, and electrochemical impedance spectroscopy. The initial discharge capacity reaches 291.7 mAh g−1 with a coulombic efficiency of 91.7% at a current density of 70 mA g−1. There is a distinct potential plateau near 1.75 and 1.89 V (versus Li+/Li) in the lithium intercalation and extraction processes, respectively, and the lithium insertion capacity is about 204 mAh g−1 over the plateau of 1.75 V region in the first cycle. From the 2nd to the 30th cycles, the average reversible capacity loss is less than 1.73 mAh g−1 per cycle. After 30 cycles, the reversible capacity still remains 211 mAh g−1 with a coulombic efficiency larger than 99.7%, implying a perfect reversibility and cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号