首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, we reported an asymmetric supercapacitor in which active carbon (AC) was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode in 1 M Li2SO4 aqueous electrolyte. The LiTi2(PO4)3/AC hybrid supercapacitor showed a sloping voltage profile from 0.3 to 1.5 V, at an average voltage near 0.9 V, and delivered a capacity of 30 mAh g−1 and an energy density of 27 Wh kg−1 based on the total weight of the active electrode materials. It exhibited a desirable profile and maintained over 85% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibited an excellent rate capability, even at a power density of 1000 W kg−1, it had a specific energy 15 Wh kg−1 compared with 24 Wh kg−1 at the power density about 200 W kg−1.  相似文献   

2.
Studies of the electrochemical behavior of K0.27MnO2·0.6H2O in K2SO4 show the reversible intercalation/deintercalation of K+-ions in the lattice. An asymmetric supercapacitor activated carbon (AC)/0.5 mol l−1 K2SO4/K0.27MnO2·0.6H2O was assembled and tested successfully. It shows an energy density of 25.3 Wh kg−1 at a power density of 140 W kg−1; at the same time it keeps a very good rate behavior with an energy density of 17.6 Wh kg−1 at a power density of 2 kW kg−1 based on the total mass of the active electrode materials, which is higher than that of AC/0.5 mol l−1 Li2SO4/LiMn2O4. In addition, this asymmetric supercapacitor shows excellent cycling behavior without the need to remove oxygen from the electrolyte solution. This can be ascribed in part to the stability of the lamellar structure of K0.27MnO2·0.6H2O. This asymmetric aqueous capacitor has great promise for practical applications due to high energy density at high power density.  相似文献   

3.
A designed asymmetric hybrid electrochemical capacitor was presented where NiO and Ru0.35V0.65O2 as the positive and negative electrode, respectively, both stored charge through reversible faradic pseudocapacitive reactions of the anions (OH) with electroactive materials. And the two electrodes had been individually tested in 1 M KOH aqueous electrolyte to define the adequate balance of the active materials in the hybrid system as well as the working voltage of the capacitor based on them. The electrochemical tests demonstrated that the maximum specific capacitance and energy density of the asymmetric hybrid electrochemical capacitor were 102.6 F g−1 and 41.2 Wh kg−1, respectively, delivered at a current density of 7.5 A cm−2. And the specific energy density decreased to 23.0 Wh kg−1 when the specific power density increased up to 1416.7 W kg−1. The hybrid electrochemical capacitor also exhibited a good electrochemical stability with 83.5% of the initial capacitance over consecutive 1500 cycle numbers.  相似文献   

4.
The graphene-manganese oxide hybrid material has been prepared by solution-phase assembly of aqueous dispersions of graphene nanosheets and manganese oxide nanosheets at room temperature. The morphology and structure of the obtained material are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction and N2 adsorption-desorption. Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. An asymmetric electrochemical capacitor with high energy and power densities based on the graphene-manganese oxide hybrid material as positive electrode and graphene as negative electrode in a neutral aqueous Na2SO4 solution as electrolyte is assembled. The asymmetrical electrochemical capacitor could cycle reversibly in a voltage of 0-1.7 V and give an energy density of 10.03 Wh kg−1 even at an average power density of 2.53 kW kg−1. Moreover, the asymmetrical electrochemical capacitor exhibit excellent cycle stability, and the capacitance retention of the asymmetrical electrochemical capacitor is 69% after repeating the galvanostatic charge-discharge test at the constant current density of 2230 mA g−1 for 10,000 cycles.  相似文献   

5.
Nanosized Ni3(Fe(CN)6)2(H2O) was prepared by a simple co-precipitation method. The electrochemical properties of the sample as the electrode material for supercapacitor were studied by cyclic voltammetry (CV), constant charge/discharge tests and electrochemical impedance spectroscopy (EIS). A specific capacitance of 574.7 F g−1 was obtained at the current density of 0.2 A g−1 in the potential range from 0.3 V to 0.6 V in 1 M KNO3 electrolyte. Approximately 87.46% of specific discharge capacitance was remained at the current density of 1.4 A g−1 after 1000 cycles.  相似文献   

6.
Indium oxide (In2O3) coating on Pt, as an electrode of thin film lithium battery was carried out by using cathodic electrochemical synthesis in In2(SO4)3 aqueous solution and subsequently annealing at 400 °C. The coated specimens were characterized by X-ray photoelectron spectroscopy (XPS) for chemical bonding, X-ray diffraction (XRD) for crystal structure, scanning electron microscopy (SEM) for surface morphology, cyclic voltammetry (CV) for electrochemical properties, and charging/discharging test for capacity variations. The In2O3 coating film composed of nano-sized particles about 40 nm revealing porous structure was used as the anode of a lithium battery. During discharging, six lithium ions were firstly reacted with In2O3 to form Li2O and In, and finally the Li4.33In phase was formed between 0.7 and 0.2 V, revealing the finer particles size about 15 nm. The reverse reaction was a removal of Li+ from Li4.33In phase at different oxidative potentials, and the rates of which were controlled by the thermodynamics state initially and diffusion rate finally. Therefore, the total capacity was increased with decreasing current density. However, the cell delivering a stable and reversible capacity of 195 mAh g−1 between 1.2 and 0.2 V at 50 μA cm−2 may provide a choice of negative electrode applied in thin film lithium batteries.  相似文献   

7.
Activated carbon–MnO2 hybrid electrochemical supercapacitor cells have been assembled and characterized in K2SO4 aqueous media. A laboratory cell achieved 195,000 cycles with stable performance. The maximal cell voltage was 2 V associated with 21 ± 2 F g−1 of total composite electrode materials (including activated carbon and MnO2, binder and conductive additive) and an equivalent serie resistance (ESR) below 1.3 Ω cm2. Long-life cycling was achieved by removing dissolved oxygen from the electrolyte, which limits the corrosion of current collectors. Scaling up has been realized by assembling several electrodes in parallel to build a prismatic cell. A stable capacity of 380 F and a cell voltage of 2 V were maintained over 600 cycles. These encouraging results show the interest of developing such devices, including non-toxic and safer components as compared to the current organic-based devices.  相似文献   

8.
All-solid-state thin-filmed lithium-ion rechargeable batteries composed of amorphous Nb2O5 negative electrode with the thickness of 50–300 nm and amorphous Li2Mn2O4 positive electrode with a constant thickness of 200 nm, and amorphous Li3PO4−xNx electrolyte (100 nm thickness), have been fabricated on glass substrates with a 50 mm × 50 mm size by a sputtering method, and their electrochemical characteristics were investigated. The charge–discharge capacity based on the volume of positive electrode increased with increasing thickness of negative electrode, reaching about 600 mAh cm−3 for the battery with the negative electrode thickness of 200 nm. But the capacity based on the volume of both the positive and negative electrodes was the maximum value of about 310 mAh cm−3 for the battery with the negative electrode thickness of 100 nm. The shape of charge–discharge curve consisted of a two-step for the batteries with the negative electrode thickness more than 200 nm, but that with the thickness of 100 nm was a smooth S-shape curve during 500 cycles.  相似文献   

9.
A porous spherical aggregation of Li4Mn5O12 nanorods with the particle size of 3 μm is prepared by oxidizing LiMn2O4 powder with (NH4)2S2O8 under hydrothermal conditions. The result displays that concentration of (NH4)2S2O8 plays a key role in forming the porous spherical aggregation and the optimal concentration of oxidant is found to be 1.5 mol L−1. The mechanism for the formation of the porous spherical aggregation is proposed. The electrochemical capacitance performance is tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge. The porous spherical aggregation exhibits a good electrochemical performance. It could deliver 375 F g−1 within potential range 0-1.4 V at a scan rate of 5 mV s−1 in 1 mol L−1 Li2SO4 and the value is cut down to less than 0.024 F g−1 per cycling period in 1000 cycles.  相似文献   

10.
Nano-size (≤100 nm) TiP2O7 is prepared by the urea assisted combustion synthesis, at 450 and 900 °C. The compound is characterized by powder X-ray diffraction, Rietveld refinement, high resolution transmission electron microscopy and surface area methods. Lithium cycling properties by way of galvanostatic cycling and cyclic voltammetry (CV) showed a reversible and stable capacity of 60 (±3) mAh g−1 (0.5 mole of Li) up to 100 cycles, when cycled at 15 mA g−1 between 2-3.4 V vs. Li. Non-aqueous hybrid supercapacitor, TiP2O7 (as anode) and activated carbon (AC) (as cathode) has been studied by galvanostatic cycling and CV in the range, 0-3 V at 31 mA g−1 and exhibited a specific discharge capacitance of 29 (±1) F g−1stable in the range, 100-500 cycles. The Ragone plot shows a deliverable maximum of 13 Wh kg−1 and 371 W kg−1 energy and power density, respectively.  相似文献   

11.
Nanoscale carbon-coated Li2MnSiO4 powder is prepared using a conventional solid-state method and can be used as the negative electrode in a Li2MnSiO4/activated carbon (AC) hybrid supercapacitor. Carbon-coated Li2MnSiO4 material presents a well-developed orthorhombic crystal structure with a Pmn21 space group, although there is a small impurity of MnO. The maximum specific capacitance of the Li2MnSiO4/AC hybrid supercapacitor is 43.2 F g−1 at 1 mA cm−2 current density. The cell delivers a specific energy as high as 54 Wh kg−1 at a specific power of 150 W kg−1 and also exhibits an excellent cycle performance with more than 99% columbic efficiency and the maintenance of 85% of its initial capacitance after 1000 cycles.  相似文献   

12.
Li2FeSiO4/C cathodes were synthesized by combination of wet-process method and solid-state reaction at high temperature, and effects of roasting temperature and modification on properties of the Li2FeSiO4/C cathode were investigated. The XRD patterns of the Li2FeSiO4/C samples indicate that all the samples are of good crystallinity, and a little Fe3O4 impurity was observed in them. The primary particle size rises as the roasting temperature increases from 600 to 750 °C. The Li2FeSiO4/C sample synthesized at 650 °C has good electrochemical performances with an initial discharge capacity of 144.9 mAh g−1 and the discharge capacity remains 136.5 mAh g−1 after 10 cycles. The performance of Li2FeSiO4/C cathode is further improved by modification of Ni substitution. The Li2Fe0.9Ni0.1SiO4/C composite cathode has an initial discharge capacity of 160.1 mAh g−1, and the discharge capacity remains 153.9 mAh g−1 after 10 cycles. The diffusion coefficient of lithium in Li2FeSiO4/C is 1.38 × 10−12 cm2 s−1 while that in Li2Fe0.9Ni0.1SiO4/C reaches 3.34 × 10−12 cm2 s−1.  相似文献   

13.
A nanocrystalline Li4Ti5O12-TiO2 duplex phase has been synthesized by a simple basic molten salt process (BMSP) using an eutectic mixture of LiNO3-LiOH-Li2O2 at 400-500 °C. The microstructure and morphology of the Li4Ti5O12-TiO2 product are characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The sample prepared by heat-treating at 300 °C for 3 h (S-1) reveals dense agglomerates of ultra-fine nanocrystalline Li4Ti5O12; with heat treatment at 400 °C for 3 h (S-2), there is a duplex crystallite size (fine < 10 nm, and coarse > 20 nm) of Li4Ti5O12-TiO2; at 500 °C for 3 h (S-3), a much coarser and less-dense distribution of lithium titanate (crystallite size ∼15-30 nm) is observed. According to the results of electrochemical testing, the S-2 sample shows initial discharge capacities of 193 mAh g−1 at 0.2 C, 168 mAh g−1 at 0.5 C, 146 mAh g−1 at 1 C, 135 mAh g−1 at 2 C, and 117 mAh g−1 at 5 C. After 100 cycles, the discharge capacity is 138 mAh g−1 at 1 C with a capacity retention of 95%. The S-2 sample yields the best electrochemical performance in terms of charge-discharge capacity and rate capability compared with other samples. Its superior electrochemical performance can be mainly attributed to the duplex crystallite structure, composed of fine (<10 nm) and coarse (>20) nm nanoparticles, where lithium ions can be stored within the grain boundary interfaces between the spinel Li4Ti5O12 and the anatase TiO2.  相似文献   

14.
Spherical Li3V2(PO4)3/C composites are synthesized by a soft chemistry route using hydrazine hydrate as the spheroidizing medium. The electrochemical properties of the materials are investigated by galvanostatic charge-discharge tests, cyclic voltammograms and electrochemical impedance spectrum. The porous Li3V2(PO4)3/C spheres exhibit better electrochemical performances than the solid ones. The spherical porous Li3V2(PO4)3/C electrode shows a high discharge capacity of 129.1 and 125.6 mAh g−1 between 3.0 and 4.3 V, and 183.8 and 160.9 mAh g−1 between 3.0 and 4.8 V at 0.2 and 1 C, respectively. Even at a charge-discharge rate of 15 C, this material can still deliver a discharge capacity of 100.5 and 121.5 mAh g−1 in the potential regions of 3.0-4.3 V and 3.0-4.8 V, respectively. The excellent electrochemical performance can be attributed to the porous structure, which can make the lithium ion diffusion and electron transfer more easily across the Li3V2(PO4)3/electrolyte interfaces, thus resulting in enhanced electrode reaction kinetics and improved electrochemical performance.  相似文献   

15.
A new cheap asymmetric supercapacitor based on activated carbon (AC) and NaMnO2 as electrodes and aqueous Na2SO4 solution as electrolyte was assembled. It shows an energy density of 19.5 Wh kg−1 at a power density of 130 W kg−1 based on the total mass of the active electrode materials and an excellent cycling behavior. This asymmetric aqueous AC//NaMnO2 capacitor is promising for practical applications due to its low price, easy preparation of NaMnO2 and friendliness to environment.  相似文献   

16.
Graphene nanosheets (GNs) dispersed with SnO2 nanoparticles loaded multiwalled carbon nanotubes (SnO2-MWCNTs) were investigated as electrode materials for supercapacitors. SnO2-MWCNTs were obtained by a chemical method followed by calcination. GNs/SnO2-MWCNTs nanocomposites were prepared by ultrasonication of the GNs and SnO2-MWCNTs. Electrochemical double layer capacitors were fabricated using the composite as the electrode material and aqueous KOH as the electrolyte. Electrochemical performance of the composite electrodes were compared to that of pure GNs electrodes and the results are discussed. Electrochemical measurements show that the maximum specific capacitance, power density and energy density obtained for supercapacitor using GNs/SnO2-MWCNTs nanocomposite electrodes were respectively 224 F g−1, 17.6 kW kg−1 and 31 Wh kg−1. The fabricated supercapacitor device exhibited excellent cycle life with ∼81% of the initial specific capacitance retained after 6000 cycles. The results suggest that the hybrid composite is a promising supercapacitor electrode material.  相似文献   

17.
Hydrothermally reduced graphene/MnO2 (HRG/MnO2) composites were synthesized by dipping HRG into the mixed aqueous solution of 0.1 M KMnO4 and 0.1 M K2SO4 for different periods of time at room temperature. The morphology and microstructure of the as-prepared composites were characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman microscope, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 successfully deposited on HRG surfaces and the morphology of the HRG/MnO2 shows a three-dimensional porous structure with MnO2 homogenously distributing on the HRG surfaces. Capacitive properties of the synthesized composite electrodes were studied using cyclic voltammetry and electrochemical impedance spectroscopy in a three-electrode experimental setup using 1 M Na2SO4 aqueous solution as electrolyte. The main results of electrochemical tests are drawn as follows: the specific capacitance value of HRG/MnO2-200 (HRG dipped into the mixed solution of 0.1 M KMnO4 and 0.1 M K2SO4 for 200 min) electrode reached 211.5 F g−1 at a potential scan rate of 2 mV s−1; moreover, this electrode shows a good cyclic stability and capacity retention. It is anticipated that the synthesized HRG/MnO2 composites will find promising applications in supercapacitors and other devices in virtue of their outstanding characters of good cycle stability, low cost and environmentally benign nature.  相似文献   

18.
Pt electrode dissolution has been investigated using an electrochemical quartz crystal microbalance (EQCM) in H2O2-containing 0.5 mol dm−3 H2SO4. The Pt electrode weight-loss of ca. 0.4 μg cm−2 is observed during nine potential sweeps between 0.01 and 1.36 V vs. RHE. In contrast, the Pt electrode weight-loss is negligible without H2O2 (<0.05 μg cm−2). To support the EQCM results, the weight-decrease amounts of a Pt disk electrode and amounts of Pt dissolved in the solutions were measured after similar successive potential cycles. As a result, these results agreed well with the EQCM results. Furthermore, the H2O2 concentration dependence of the Pt weight-decrease rate was assessed by successive potential steps. These EQCM data indicated that the increase in H2O2 accelerates the Pt dissolution. Based on these results, H2O2 is known to be a major factor contributing to the Pt dissolution.  相似文献   

19.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

20.
A new type of asymmetric supercapacitor containing a MnFe2O4 negative electrode and a LiMn2O4 positive electrode in aqueous LiNO3 electrolyte has been synthesized and characterized. The nanocrystalline MnFe2O4 anode material has a specific capacitance of 99 F g−1 and the LiMn2O4 cathode a specific capacity of 130-100 mAh g−1 under 10-100 C rate. The cell has a maximum operating voltage window of ca. 1.3 V, limited by irreversible reaction of MnFe2O4 toward reducing potential. The specific power and specific energy of the full-cell increase with increasing anode-to-cathode mass ratio (A/C) and saturate at A/C ∼4.0, which gives specific cell energies, based on total mass of the two electrodes, of 10 and 5.5 Wh kg−1 at 0.3 and 1.8 kW kg−1, respectively. The cell shows good cycling stability and exhibits significantly slower self-discharge rate than either the MnFe2O4 symmetric cell or the other asymmetric cells having the same cathode but different anode materials, including activated carbon fiber and MnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号