首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical study is performed in order to evaluate the performance and optimal operating conditions of a palladium membrane reactor for methanol synthesis. A novel reactor configuration with a Pd wall, which is perm‐selective to hydrogen, has been proposed. In this configuration the reactants are added to the tube side while pure hydrogen is added to the shell side, as a result, the hydrogen diffuses across the membrane from the shell side to the tube side. In this membrane reactor, hydrogen penetrates to the reaction side in order to maintain a suitable hydrogen level in the whole length of the reactor and shift the equilibrium reaction. The effects of different parameters on the methanol output mole fraction were investigated in the co‐current mode. These parameters were membrane thickness, reaction side flow rate, reaction side pressure, shell side pressure and H2/CO2 ratio in the feed.  相似文献   

2.
A novel fluidized‐bed membrane dual‐type methanol reactor (FBMDMR) concept is proposed in this paper. In this proposed reactor, the cold feed synthesis gas is fed to the tubes of the gas‐cooled reactor and flows in counter‐current mode with a reacting gas mixture in the shell side of the reactor, which is a novel membrane‐assisted fluidized bed. In this way, the synthesis gas is heated by heat of reaction which is produced in the reaction side. Hydrogen can penetrate from the feed synthesis gas side into the reaction side as a result of a hydrogen partial pressure difference between both sides. The outlet synthesis gas from this reactor is fed to tubes of the water‐cooled packed bed reactor and the chemical reaction is initiated by the catalyst. The partially converted gas leaving this reactor is directed into the shell of the gas‐cooled reactor and the reactions are completed in this fluidized‐bed side. This reactor configuration solves some drawbacks observed from the new conventional dual‐type methanol reactor, such as pressure drop, internal mass transfer limitations, radial gradient of concentration, and temperature in the gas‐cooled reactor. The two‐phase theory of fluidization is used to model and simulate the proposed reactor. An industrial dual‐type methanol reactor (IDMR) and a fluidized‐bed dual‐type methanol reactor (FBDMR) are used as a basis for comparison. This comparison shows enhancement in the yield of methanol production in the fluidized‐bed membrane dual‐type methanol reactor (FBMDMR).  相似文献   

3.
In this work, a fluidized-bed membrane dual-type reactor was evaluated for CO2 removal in methanol synthesis process. The feed synthesis gas is preheated in the tubes of the gas-cooled reactor and flowing in a counter-current mode with reacting gas mixture in the shell side. Due to the hydrogen partial pressure driving force, hydrogen can penetrate from feed synthesis gas into the reaction side through the membrane. The outlet synthesis gas from this reactor is fed to tubes of the water-cooled packed-bed reactor and the chemical reaction is initiated by the catalyst. The methanol-containing gas leaving this reactor is directed into the shell of the gas-cooled reactor and the reactions are completed in this fluidized-bed side. A two-phase dynamic model in bubbling regime of fluidization was developed in the presence of long-term catalyst deactivation. This model is used to compare the removal of CO2 in a FBMDMR with a conventional dual-type methanol synthesis reactor (CDMR) and a membrane dual-type methanol synthesis reactor (MDMR). The simulation results show a considerable enhancement in the CO2 conversion due to have a favourable profile of temperature and activity along the fluidized-bed membrane dual-type reactor relative to membrane and conventional dual-type reactor systems.  相似文献   

4.
A dynamic model for a membrane dual‐type methanol reactor was developed in the presence of catalyst deactivation. This reactor is a shell and tube type where the first reactor is cooled with cooling water and the second one with feed synthesis gas. In this reactor system, the wall of the tubes in the gas‐cooled reactor is covered with a palladium‐silver membrane which is only permeable to hydrogen. Hydrogen can penetrate from the feed synthesis gas side into the reaction side due to the hydrogen partial pressure driving force. Hydrogen permeation through the membrane shifts the reaction towards the product side according to the thermodynamic equilibrium. Moreover, the performance of the reactor was investigated when the reaction gas side and feed gas side streams are continuously either co‐current or countercurrent. Comparison between co‐current and countercurrent mode in terms of temperature, activity, methanol production rate as well as permeation rate of hydrogen through the membrane shows that the reactor in co‐current configuration operates with lower conversion and also lower permeation rate of hydrogen but with longer catalyst life than does the reactor in countercurrent configuration.  相似文献   

5.
In this study, a dynamic model for a membrane dual‐type methanol reactor was developed in the presence of long term catalyst deactivation. The proposed model is used to compare the performance of a membrane dual‐type methanol reactor with a conventional dual‐type methanol reactor. A conventional dual‐type methanol reactor is a shell and tube heat exchanger reactor in which the first reactor is cooled with cooling water and the second one is cooled with synthesis gas. In a membrane dual‐type reactor, the wall of the tubes in the gas‐cooled conventional reactor is covered with a palladium‐silver membrane, which is only permeable to hydrogen. Hydrogen can penetrate from the feed synthesis gas side into the reaction side due to the hydrogen partial pressure driving force. Hydrogen permeation through the membrane shifts the reaction towards the product side according to the thermodynamic equilibrium. The proposed dynamic model was validated against measured daily process data of a methanol plant recorded for a period of four years and a good agreement was achieved. The simulation results show that there is a favorable profile of temperature and activity of the membrane dual‐type reactor relative to single and conventional dual‐type reactor systems. Therefore, the performance of methanol reactor systems improves when a membrane is used in a conventional dual‐type methanol reactor.  相似文献   

6.
In this study, a dynamic mathematical model of a Membrane-Gas-Flowing Solids-Fixed Bed Reactor (Membrane-GFSFBR) with in-situ water adsorption in the presence of catalyst deactivation is proposed for methanol synthesis. The novel reactor consists of water adsorbent and hydrogen-permselective Pd-Ag membrane. In this configuration feed gas and flowing adsorbents are both fed into the outer tube of the reactor. Contact of gas and fine solids particles inside packed bed results in selective adsorption of water from methanol synthesis which leads to higher methanol production rate. Afterwards, the high pressure product is recycled to the inner tube of the reactor and hydrogen permeates to the outer tube which shifts the reaction towards more methanol production. Dynamic simulation result reveals that simultaneous application of water adsorbent and hydrogen permeation in methanol synthesis process contributes to a significant enhancement in methanol production. The notable advantage of Membrane-GFSFBR is the continuous adsorbent regeneration during the process. Moreover, a theoretical investigation has been performed to evaluate the optimal operating conditions and to maximize the methanol production in Membrane-GFSFBR using differential evolution (DE) algorithm as a robust method. The obtained optimization result shows there are optimum values of inlet temperatures of gas phase, flowing solids phase, and shell side under which the highest methanol production can be achieved.  相似文献   

7.
Coupling reaction and separation in a membrane reactor improves the reactor efficiency and reduces purification cost in the next stages. In this work a novel reactor consisting two membrane layers has been proposed for simultaneous hydrogen permeation to reaction zone and water vapor removal from reaction zone in the methanol synthesis reactor. In this configuration conventional methanol reactor is supported by a Pd/Ag membrane layer for hydrogen permeation and alumina-silica composite membrane layer for water vapor removal from reaction zone. In this reactor syngas is fed to the reaction zone that is surrounded with hydrogen-permselective membrane tube. The water vapor-permselective membrane tube is placed in the reaction zone. A steady state heterogeneous one-dimensional mathematical model is developed for simulation of the proposed reactor. To verify the accuracy of the model, simulation results of the conventional reactor is compared with the available plant data. The membrane fixed bed reactor benefits are higher methanol production rate, higher quality of outlet product and consequently lower cost in product purification stage. This configuration has enhanced the methanol yield by 10.02% compared with industrial reactor. Experimental proof-of-concept is needed to establish the safe operation of the proposed configuration.  相似文献   

8.
In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO2 yields, H2 and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO2 and CH4 and also produces more gasoline.  相似文献   

9.
This paper presents a study on optimization of a membrane dual-type methanol reactor in the presence of catalyst deactivation. A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enhancement of methanol production in a membrane dual-type methanol reactor. A mathematical heterogeneous model has been used to simulate and compare the membrane dual-type methanol reactor with conventional methanol reactor. An auto-thermal dual-type methanol reactor is a shell and tube heat exchanger reactor which the first reactor is cooled with cooling water and the second one is cooled with synthesis gas. In a membrane dual-type reactor the wall of the tubes in the gas-cooled reactor is covered with a pd–Ag membrane, which is only hydrogen-permselective. The simulation results have been shown that there are optimum values of reacting gas and coolants temperatures to maximize the overall methanol production. Here, genetic algorithms have been used as powerful methods for optimization of complex problems. In this study, the optimization of the reactor has been investigated in two approaches. In the first approach, the optimal temperature profile along the reactor has been studied and then a stepwise approach has been followed to determine the optimal profiles for saturated water and gas temperatures in three steps during the time of operations to maximize the methanol production rate. The optimization methods have enhanced 5.14% and 5.95% additional yield throughout 4 years of catalyst lifetime for first and second optimization approaches, respectively.  相似文献   

10.
The coupling of the energy intensive endothermic reaction systems with appropriate exothermic reactions reduces the size of the reactors and can improve the thermal efficiency of processes. One type of a suitable reactor for such a kind of coupling is the heat exchanger reactor. In this study, the catalytic methanol synthesis is coupled with the catalytic dehydrogenation of cyclohexane to benzene in an integrated reactor formed from two fixed beds separated by a wall where heat is transferred across the surface of the tube. A steady-state heterogeneous model of the two fixed beds predicts the performance of the two different configurations of the thermally coupled reactor. The co-current mode is investigated and the simulation results are compared with the corresponding predictions for the industrial methanol fixed bed reactor operating in the same feed conditions. The results of the study reveal that should the exothermic and endothermic reactions be located in the shell side and tube side, respectively, the methanol production rate will increase in comparison with the conventional methanol synthesis reactor as well as the case where the exothermic reaction is located in the tube side and endothermic reaction in the shell side.  相似文献   

11.
This work presents novel application of palladium-based membrane in a wastewater treatment loop of urea plant for hydrogen production. Urea wastewater treatment loop is based on combined thermal hydrolysis-desorption operations. The wastewater of urea plant includes ammonia and urea which in the current treatment loop; urea decomposes to ammonia and carbon dioxide. The catalytic hydrogen-permselective membrane reactor is proposed for hydrogen production from desorbed ammonia of urea wastewater which much of it discharges to air and causes environmental pollution. Therefore hydrogen is produced from decomposition of ammonia on nickel-alumina catalyst bed simultaneously and permeates from reaction side to shell side through thin layer of palladium-silver membrane. Also a sweep gas is used in the shell side for increasing driving force. In this way, 4588 tons/yr hydrogen is produced and environmental problem of urea plant is solved. The membrane reactor and urea wastewater treatment loop are modeled mathematically and the predicted data of the model are consistent with the experimental and plant data that show validity of the model. Also the effects of key parameters on the performance of catalytic hydrogen-permselective membrane reactor such as the temperature, pressure, thickness of Pd-Ag layer, configuration of flow and sweep gas flow ratio were examined.  相似文献   

12.
Coupling reaction and separation in a membrane reactor improves the reactor efficiency and reduces purification cost in the following stages. This paper focuses on modeling and optimization of methanol production in a dual-membrane reactor. In this configuration, conventional methanol reactor is supported by Pd/Ag membrane tubes for hydrogen permeation and alumina–silica composite membrane tubes for water vapor removal from the reaction zone. A steady state heterogeneous one-dimensional mathematical model is developed to predict the performance of this novel configuration. In order to verify the accuracy of the model, simulation results of the conventional reactor is compared with available industrial plant data. The main advantages of the optimized dual-membrane reactor are: higher CO2 conversion, the possibility of overcoming the limitation imposed by thermodynamic equilibrium, improvement of the methanol production rate and its purity. Genetic algorithm as an exceptionally simple evolution strategy is employed to maximize the methanol production as the objective function. This configuration has enhanced methanol production rate by 13.2% compared to industrial methanol synthesis reactor.  相似文献   

13.
Coupling energy-intensive endothermic reaction systems with suitable exothermic reactions improves the thermal efficiency of processes and reduces the capital cost of the reactors. In this study, a steady-state heterogeneous model for a novel thermally coupled reactor, containing methanol synthesis reactions and cyclohexane dehydrogenation, was developed. This heat exchanger reactor consists of two fixed beds separated by a wall, where heat is transferred across the surface of the tube from the exothermic into the endothermic side. The co-current mode is investigated, and the simulation results are compared with corresponding data for an industrial methanol fixed bed reactor operated at the same feed conditions. The results show that although methanol productivity in the thermally coupled reactor is not higher than that in the conventional methanol reactor, benzene is also produced as an additional valuable product in a favorable manner, and autothermality is achieved within the reactor. This novel configuration can increase the methanol synthesis temperature at the first part of the reactor for higher process rates and then reduce the temperature at the second part of reactor for increasing thermodynamic equilibrium; those are two key issues in methanol reactor configurations. The influence of inlet temperature, molar flow rate, and shell diameter of the endothermic stream on reactor behavior is investigated. The results suggest that coupling of these reactions in co-current mode could be feasible and beneficial. Experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor.  相似文献   

14.
In this work, a dynamic model for a cascade fluidized-bed hydrogen permselective membrane methanol reactor (CFBMMR) has been developed in the presence of long-term catalyst deactivation. In the first catalyst bed, the synthesis gas is partly converted to methanol in a water-cooled reactor, which is a fluidized-bed. In the second bed, which is a membrane assisted fluidized-bed reactor, the reaction heat is used to preheat the feed gas to the first bed. This reactor configuration solves some observed drawbacks of new conventional dual type methanol reactor (CDMR) and even fluidized-bed membrane dual type methanol reactor (FBMDMR) such as pressure drop, internal mass transfer limitations, radial gradient of concentration and temperature in both reactors. A dynamic two-phase theory in bubbling regime of fluidization is used to model and simulate the proposed reactor. The proposed model has been used to compare the performance of a cascade fluidized-bed membrane methanol reactor with fluidized-bed membrane dual-type methanol reactor and conventional dual-type methanol reactor. The simulation results show a considerable enhancement in the methanol production due to the favorable profile of temperature and activity along the CFBMMR relative to FBMDMR and CDMR systems.  相似文献   

15.
The modeling of adiabatic and non-adiabatic reactors, using three cooling mediums in the shell side of a shell and tube reactor in cocurrent and countercurrent flow regimes has been conducted. The cooling mediums used in this research are saturated water and methanol feed gas to a reactor which is preheated in the shell side and a special type of oil. The results of adiabatic reactor modeling show good compatibility with the data received from a commercial plant. The results of non-adiabatic reactor modeling showed that more methanol conversion can be achieved in a lower length of reactor, even though in some cases the maximum temperature in the tube side of the reactor is more than the deactivation temperature of the catalyst.  相似文献   

16.
Since in the foreseeable future liquid hydrocarbon fuels will play a significant role in the transportation sector, methanol might be used potentially as a cleaner and more reliable fuel than the petrochemical-based fuels in the future. Consequently, enhancement of methanol production technology attracts increasing attention and, therefore, several studies for developing new methanol synthesis reactors have been conducted worldwide. The purpose of this research is to reduce the pressure drop and recompression costs through the conventional single-stage methanol reactor. To reach this goal, a novel axial-flow spherical packed bed reactor (AF-SPBR) for methanol synthesis in the presence of catalyst deactivation is developed. In this configuration, the reactor is loaded with the same amount of catalyst in the conventional single-stage methanol reactor. The reactants are flowing axially through the reactor. The dynamic simulation of the spherical reactors has been studied in the presence of long-term catalyst deactivation for four reactor configurations and the results are compared with the achieved results of the conventional tubular packed bed reactor (CR). The results show that the three and four stages reactor setups can improve the methanol production rate by 4.4% and 7.7% for steady state condition. By utilizing the spherical reactors, some drawbacks of the conventional methanol synthesis reactors such as high pressure drop, would be solved. This research shows how this new configuration can be useful and beneficial in the methanol synthesis process.  相似文献   

17.
《分离科学与技术》2012,47(9):2081-2097
Abstract

This study focuses on modeling and analysis of the non‐isothermal, non‐adiabatic, dehydrogenation of cyclohexane in membrane catalytic reactors. The dehydrogenation reaction is endothermic with a low equilibrium conversion of 0.06 at a temperature of 473 K and pressure of 101 kPa. The membrane reactor removes hydrogen from the reaction mixture and results in increase of the reaction conversion. The analysis is made as a function of feed flow rate, feed temperature, feed composition, inert flow rate in the feed stream, flow rate of sweep gas, pressures of the tube side and shell side, permeability constant of hydrogen, and tube diameter. The analysis also includes a study of the co‐current and the counter‐current flow modes. The results show lower conversion for the counter‐current flow mode, because of the decrease in the driving force for permeation. A comparison of model predictions against previous literature studies shows good agreement.  相似文献   

18.
The goal of this research is dynamic operability analysis of dual-membrane reactor considering catalyst deactivation to produce methanol. A dynamic heterogeneous one-dimensional model is developed to predict the performance of this configuration. In this configuration, a conventional reactor has been supported by a Pd/Ag membrane tube for hydrogen permeation and alumina–silica composite membrane tube to remove water vapor from the reaction zone. To verify the accuracy of the considered model, the results of conventional reactor are compared with the plant data. The main advantages of the dual-membrane reactor are: higher catalyst activity and lifetime, higher CO2 conversion and methanol production.  相似文献   

19.
The storage of renewable energy over a long time period, via methanol synthesis, will become very important to reach a greenhouse gas‐free energy supply. A steady‐state methanol synthesis flowsheet, containing a 2D pseudo‐homogeneous reactor, flash, and recycle, is modeled in MATLAB. With the kinetic models of Graaf and Bussche & Froment, two frequently used kinetic models for conventional methanol synthesis are compared and evaluated for applicability regarding methanol synthesis from CO2/H2. The results are presented for different cases of synthesis gas compositions. Both kinetic models produce similar results when the system is limited by thermodynamic equilibrium. However, differences in reaction rates are observable from the reactor axial molar component profiles of the reaction products.  相似文献   

20.
A hollow fiber membrane reactor, which resembles a tube-and-shell heat exchanger, was developed for homogeneous catalytic reactions with gas reactants and products. The gas stream flows through the tube side while the reaction takes place in the catalyst solution which fills the shell side. The separation load of product from the catalyst solution can be reduced by using a hollow fiber membrane reactor instead of a conventional bubble column reactor. The reactor operates in a plug-flow pattern with a large mass transfer area per unit volume of catalyst solution

This concept was investigated experimentally using the direct oxidation of ethylene to acetaldehyde reaction in an aqueous solution of palladium (H) chloride-cupric chloride with a silicone rubber membrane reactor and a polypropylene membrane reactor. It was experimentally demonstrated that membrane reactors could achieve higher production rates per unit volume of catalyst than the conventional sparged reactor. The experimental data were in good agreement with the predictions by the mathematical model. The conditions under which the membrane reactor will be more advantageous than the conventional sparged reactors can be readily ascertained with the analytical solution of the simplified membrane reactor model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号