首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
In this paper, proton exchange membranes for direct methanol fuel cells were prepared by blending sulfonated poly(arylene ether sulfone) with poly (vinylidene fluoride-co-hecafluoropropylene)(PVdF-HFP) and polyethersulfone (PES) to decrease methanol permeability while maintaining high proton conductivity. The content of the second polymer, such as PES and PVdF, in the blend membranes was controlled at 10–40 wt% based on SPAES. In order to investigate the effects of the second polymer content in the blended membranes, parameters of the prepared membranes related to fuel cell performance were characterized, including their morphology, mechanical properties, methanol permeability, and proton conductivity. Surface roughness of the blend membrane was increased by the introduction of a hydrophobic polymer. Mechanical properties of the PES/SPAES blend membrane were improved owing to interaction between the sulfonic acid groups in SPAES and PES. However, the tensile strength of the PVdF/SPAES blend membrane was decreased by due to the poor compatibility of SPAES and PVdF. The methanol permeability in the blended membranes decreased with increasing content of PES and PVdF. The SPAES/PES blend membranes exhibited good proton conductivity and lower methanol permeability than the SPAES membrane. The SVdF15 blend membrane showed the highest selectivity due to the absence of methanol crossover and a small decrease of proton conductivity. These blend membranes are suitable for DMFC applications.  相似文献   

2.
A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L−1 methanol aqueous solution at 80 °C slowly decreases from 26 to 19% with the increase of SiO2 content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 × 10−7 cm2 s−1, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content.  相似文献   

3.
Cross-linked miscible blend (CMB) membranes were prepared from sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated polynaphthalimide (SPI). They were transparent and insoluble in solvents. They showed the intermediate properties between SPAES and SPI concerning mechanical strength, water uptake, membrane swelling and proton conductivity. As for membrane swelling and proton conductivity, SPAES was almost isotropic, whereas SPI was highly anisotropic. CMB membranes were moderately anisotropic and had the advantages of the smaller in-plane membrane swelling and the larger through-plane conductivity compared to SPAES and SPI, respectively. Polymer electrolyte fuel cell performance of CMB2 membrane with an equal weight ratio of SPAES/SPI and an ion exchange capacity (IEC) of 1.74 meq g−1 was investigated, compared to SPI membrane (R1) with a slightly higher IEC of 1.86 meq g−1. At 90 °C, 0.1 MPa and relatively high humidification of 82/68% RH or 0.2 MPa and low humidification of 50-30% RH, CMB2 showed the reasonably high cell performances. At 110 °C and 50-33% RH, the cell performance was fairly high only at a high pressure of 0.3 MPa, but low at 0.2-0.15 MPa. At these conditions, the cell performance was better for CMB2 than for R1 due to the more effective back-diffusion of water formed at cathode into membrane. CMB2 showed the fairly high PEFC durability at 110 °C.  相似文献   

4.
Novel poly(arylene ether sulfone) copolymers containing different amount of pendant sulfonic acid groups have been synthesized by an aromatic substitution polymerization reaction. The properties of the synthesized sulfonated poly(diphenylsulfone-diphenol) (SDPS-DP) copolymers depend on the sulfonic acid group content in the copolymers. Although all the copolymers show good thermal stability, low liquid uptake, and low methanol crossover, they exhibit lower proton conductivity than Nafion or sulfonated poly(ether ether ketone) (SPEEK). Taking advantage of the low methanol crossover, multilayer membranes consisting of the SDPS-DP copolymer as a methanol-barrier center layer and SPEEK as the proton-conducting outer layers have been fabricated and characterized. The SPEEK/SDPS-DP-60/SPEEK multilayer membranes with an optimized center layer thickness are found to exhibit better performance and higher power density in DMFC than plain SPEEK and Nafion 115 membranes.  相似文献   

5.
The organic-inorganic composite membranes are prepared by inserting poly(styrene sulfonate)-grafted silica particles into a polymer matrix of sulfonated poly(arylene ether sulfone) copolymer. The first step consisted in using atom transfer radical polymerization method to prepare surface-modified silica particles grafted with sodium 4-styrenesulfonate, referred to as PSS-g-SiO2. Ion exchange capacities up to 2.4 meq/g are obtained for these modified silica particles. In a second step, a sulfonated poly(arylene ether sulfone) copolymer is synthesized via nucleophilic step polymerization of sulfonated 4,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone and phenolphthalin monomers in the presence of potassium carbonate. The copolymer is blended with various amounts of silica particles to form organic-inorganic composite membranes. Esterification reaction is carried out between silica particles and the sulfonated polymer chains by thermal treatment in the presence of sodium hypophosphite, which catalyzed the esterification reaction. The water uptake, proton conductivity, and thermal decomposition temperature of the membranes are measured. All composite membranes show better water uptake and proton conductivity than the unmodified membrane. Moreover, the membranes are tested in a commercial single cell at 80 °C and 120 °C in humidified H2/air under different relative humidity conditions. The composite membrane containing 10%(w/w) of PSS-g-SiO2 particles, which have ester bonds between polymer chains and silica particles, showed the best performance of 690 mA cm−2 at 0.6 V, 120 °C and 30 %RH, even higher than the commercial Nafion® 112 membrane.  相似文献   

6.
A series of sulfonated poly(arylene ether ketone sulfone)s polymer having a degree of sulfonation of 80% and a carboxyl group in the side chain (C-SPAEKS) were prepared by polycondensation. The 4-aminopyridine grafted sulfonated poly(arylene ether ketone sulfone)s polymer membranes (SPPs) were prepared by amidation reaction with the carboxyl group to immobilize 4-aminopyridine on the side chain. The 1H NMR results and Fourier transform infrared of SPP membranes demonstrated the successful grafting of the 4-aminopyridine. Proton conductivity, water absorption, swelling ratio, and thermal stability of different proportions of SPP membranes were investigated under the different conditions. With the increase of pyridine grafting content, the methanol permeability coefficient of the membrane decreased significantly from 8.17 × 10−7 cm2s−1 to 8.92 × 10−8 cm2s−1 at 25 °C. And, the proton conductivity and relative selectivity of the membrane were positively correlated with the grafted pyridine content. Among them, the SPP-4 membrane exhibited the highest proton conductivity of 0.088 Scm−1 at 100 °C. The relative selectivity increased from 4.73 × 104 S scm−3 to 9.84 × 104 S scm−3.  相似文献   

7.
Novel 4,4′-dihydroxy-α-methylstilbene (HMS)-based sulfonated poly(arylene ether sulfone) with sulfonic acid composition ranging from 10 to 40 mol% was synthesized via nucleophilic step polymerization of 4,4′-dihydroxy-α-methylstilbene, 4,4′-dichloro-3,3′-disulfonic acid diphenylsulfone and 4,4′-dichlorodiphenylsulfone and blended with silica sol to form organic/inorganic nano-composite membranes. The organic/inorganic nano-composite copolymers produced show a high glass transition temperature and thermal decomposition temperatures from 318 to 451 °C. The copolymers present appropriate toughness during the membrane process. The equilibrium water uptake and proton conductivity of the obtained organic/inorganic nano-composite membranes were measured as functions of temperature, degree of sulfonation and silica content. In general, the water uptake increased from 8 to 37 wt.%, and the proton conductivity of the organic/inorganic nano-composite membranes increased from 0.003 to 0.110 S cm−1 as the degree of sulfonation increased from 10 to 40 mol%, the silica content increased from 3 to 10 wt.%, and the temperature increased from 30 to 80 °C. The single cell performance of the 40 mol% organic/inorganic nano-composite membrane with various silica contents ranged from 11 to 13 mW cm−2 at 80 °C, and the power density was higher than Nafion® 117. Including the thermal properties, swelling, conductivity and single cell performance, the nano-composite membranes are able to satisfy the requirements of proton exchange membranes for direct methanol fuel cells (DMFC).  相似文献   

8.
Sulfonated poly(arylene ether sulfone) copolymers containing carboxyl groups are prepared by an aromatic substitution polymerization reaction using phenolphthalin, 3,3′-disulfonated-4,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone and 4,4′-bisphenol A as polymer electrolyte membranes for the development of high temperature polymer electrolyte membrane fuel cells. Thin, ductile films are fabricated by the solution casting method, which resulted in membranes with a thickness of approximately 50 μm. Hydroquinone is used to crosslink the prepared copolymer in the presence of the catalyst, sodium hypophosphite. The synthesized copolymers and membranes are characterized by 1H NMR, FT-IR, TGA, ion exchange capacity, water uptake and proton conductivity measurements. The water uptake and proton conductivity of the membranes are decreased with increasing the degree of crosslinking which is determined by phenolphthalin content in the copolymer (0-15 mol%). The prepared membranes are tested in a 9 cm2 commercial single cell at 80 °C and 120 °C in humidified H2/air under different relative humidity conditions. The uncrosslinked membrane is found to perform better than the crosslinked membranes at 80 °C; however, the crosslinked membranes perform better at 120 °C. The crosslinked membrane containing 10 mol% of phenolphthalin (CPS-PP10) shows the best performance of 600 mA cm−2 at 0.6 V and better performance than the commercial Nafion® 112 (540 mA cm−2 at 0.6 V) at 120 °C and 30 % RH.  相似文献   

9.
Fuel cell operating at high temperature and low humidity conditions is in urgent demand. Low glass transition temperature, high cost, and high humidity dependence of commercial membranes such as Nafion, however, are major obstacles to commercialization. Sulfonated poly (arylene ether sulfone) is a promising polymer that may show a breakthrough in this respect as it shows high thermal stability and mechanical strength while maintaining performance and cost competitiveness. Its relatively high dependence on humidity levels, however, is still an obstacle that needs to be tackled. The incorporation of silsesquioxane particles with disulfonated naphthol (NSi) functionalization is designed to increase the number of proton conducting moieties in the polymer matrix thus aiding proton transport. The incorporation of NSi has drastically improved performance especially at lower humidity conditions. Although current density of 5 wt.% NSi hybrid membrane shows a 2.0% increase in performance at 80°C/100 R.H.% that at 120 °C/30 R.H.% shows a 200% rise in current density at 0.7 V compared to that of pristine membranes. In addition, the evenly distributed silsesquioxane particles physically reduce fuel crossover values by 33.4%.  相似文献   

10.
The development of hydrocarbon polymer electrolyte membranes with high proton conductivities and good stability as alternatives to perfluorosulfonic acid membranes is an ongoing research effort. A facile and effective thermal crosslinking method was carried out on the blended sulfonated poly (ether ether ketone)/poly (aryl ether sulfone) (SPEEK/SPAES) system. Two SPEEK polymers with ion exchange capacities (IECs) of 1.6 and 2.0 mmol g?1 and one SPAES polymer (2.0 mmol g?1) were selected to create different blends. The effect of thermal crosslinking on the fundamental properties of the membranes, especially their physicochemical stability and electrochemical performance, were investigated in detail. The homogeneous and flexible thermally-crosslinked SPEEK/SPAES membranes displayed excellent mechanical toughness (27–46 Mpa), suitable water uptake (<60%), high dimensional stability (swelling ratio < 15%) and large proton conductivity (>120 mS cm?1) at 80 °C. The thermal crosslinking membranes also show significantly enhanced hydrolytic (<2.5%) and oxidative stability (<2%). Fuel cell with t-SPEEK/SPAES (1:2:2) membrane achieves a power density of 665 mW cm?2 at 80 °C.  相似文献   

11.
A series of sulfonated poly(arylene ether sulfone) with photocrosslinkable moieties is successfully synthesized by direct copolymerization of 3,3′-disulfonated 4,4′-difluorodiphenyl sulfone (SDFDPS) and 4,4′-difluorodiphenyl sulfone (DFDPS) with 4,4′-biphenol (BP) and 1,3-bis-(4-hydroxyphenyl) propenone (BHPP). The content of crosslinkable moieties in the polymer repeat unit is controlled from 0 to 10 mol% by changing the monomer feed ratio of BHPP to BP. The polymer membranes can be crosslinked by irradiating UV with a wavelength of 365 nm. From FT-IR analysis, it can be identified that UV crosslinking mainly occurs due to the combination reaction of radicals that occurs in conjunction with the breaking of the carbon–carbon double bonds (–CH = CH-) of the chalcone moieties in the backbone. Consequently, a new bond is created to form cyclobutane. The crosslinked membranes show less water uptake, a lower level of methanol permeability, and good thermal and mechanical properties compared to pristine (non-crosslinked) membranes while maintaining a reasonable level of proton conductivity. Finally, the fuel cell performance of the crosslinked membranes is comparable to that of the Nafion 115 membrane, demonstrating that these membranes are promising candidates for use as polymer electrolyte membranes in DMFCs.  相似文献   

12.
A new alkyl chain modified sulfonated poly(ether sulfone) (mPES) was synthesized and formed into membranes. The MEAs were tested in the PEMFC and evaluated systematically in the DMFC by varying the methanol concentration from 0.5 to 5.0 M at 60 °C and 70 °C. The synthesized mPES copolymer has been characterized by nuclear magnetic resonance spectroscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The proton conductivity of the resulting membrane is higher than the threshold value of 10−2 S cm−1 at room temperature for practical PEM fuel cells. The membrane is insoluble in boiling water, thermally stable until 250 °C and shows low methanol permeability. In the H2/air PEMFC at 70 °C, a current density of 600 mA cm−2 leads to a potential of 637 mV and 658 mV for 50 μm thick mPES 60 and Nafion NRE 212, respectively. In the DMFC, mPES 60's methanol crossover current density is 4 times lower than that for Nafion NRE 212, leading to higher OCV values and peak power densities. Among all investigated conditions and materials, the highest peak power density of 120 mW cm−2 was obtained with an mPES 60 based MEA at 70 °C and a methanol feed of 2 M.  相似文献   

13.
During the past decade proton exchange membrane fuel cells (PEMFCs) as one kind of the potential clean energy sources for electric vehicles and portable electronic devices are attracting more and more attentions. Although Nafion® membranes are considered as the benchmark of proton exchange membranes (PEMs), the drawbacks of Nafion® membranes restrict the commercialization in the practical application of PEMFCs. As of today, the attention is to focus on developing both high-performance and low-cost PEMs to replace Nafion® membranes. In all of these PEMs, sulfonated poly(arylene ether ketone)s (SPAEKs) and sulfonated poly(arylene ether sulfone)s (SPAESs) are the most promising candidates due to their excellent performance and low price. In this review, the efforts of SPAEK and SPAES membranes are classified and introduced according to the chemical compositions, the microstructures and configurations, as well as the composites with polymers and/or inorganic fillers. Specifically, several perspectives related to the modification and composition of SPAESs and SPAEKs are proposed, aiming to provide the development progress and the promising research directions in this field.  相似文献   

14.
A series of crosslinkable sulfonated poly(arylene ether sulfone)s (SPAESs) were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil and 3,3′-disulfonated-4,4′-difluorodiphenyl sulfone disodium salt. Quinoxaline-based crosslinked SPAESs were prepared via the cyclocondensation reaction of benzil moieties in polymer chain with 3,3′-diaminobenzidine to form quinoxaline groups acting as covalent and acid-base ionic crosslinking. The uncrosslinked and crosslinked SPAES membranes showed high mechanical properties and the isotropic membrane swelling, while the later became insoluble in tested polar aprotic solvents. The crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes had the lower membrane dimensional change, lower methanol permeability and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CS1-2) with measured ion exchange capacity of 1.53 mequiv. g−1 showed a reasonably high proton conductivity of 107 mS/cm with water uptake of 48 wt.% at 80 °C, and exhibited a low methanol permeability of 2.3 × 10−7 cm2 s−1 for 32 wt.% methanol solution at 25 °C. The crosslinked SPAES membranes have potential for PEFC and DMFCs.  相似文献   

15.
A novel strategy in which the benzimidazole group and sulfonic group are simultaneously attached to an aromatic polymer has been reported in this paper. For this purpose, sulfonated poly(arylene ether ketone) copolymers containing carboxylic acid groups (SPAEK-x-COOH, x refers to the molar percentage of sulfonated repeating units) are prepared by the aromatic nucleophilic polycondensation of sodium 5,5′-carbonyl-bis(2-fluobenzene-sulfonate) (SDFBP), 4,4′-difluorobenzophenone (DFBP) and phenolphthalin (PPL). Then the carboxylic acid groups attached to the SPAEK-x-COOH are transformed to benzimidazole units through condensation reactions (referred to as SPAEK-x-BI). Fourier transform infrared spectroscopy and 1H NMR measurements are used to characterize and confirm the structures of these copolymers. SPAEK-x-COOH membranes exhibit superior mechanical properties with maximum elongations at break up to 133%, meanwhile SPAEK-x-BI also shows good thermal and mechanical stability. The proton conductivity, swelling ratio and methanol permeability of the polymers with benzimidazole are lower than those with carboxylic groups, which indicated that there is an acid-base complex between benzimidazole and sulfonic acid groups. A balance of proton conductivity, methanol permeability, thermal and mechanical stabilities can be designed by incorporation of functional groups to meet the requirements for the applications in direct methanol fuel cells.  相似文献   

16.
Sulfonated organosilane functionalized graphene oxides (SSi-GO) synthesized through the grafting of graphene oxide (GO) with 3-mercaptopropyl trimethoxysilane and subsequent oxidation have been used as a filler in sulfonated poly(ether ether ketone) (SPEEK) membranes. The incorporation of SSi-GOs greatly increases the ion-exchange capacity (IEC), water uptake, and proton conductivity of the membrane. With well-controlled contents of SSi-GOs, the composite membranes exhibit higher proton conductivity and lower methanol permeability than Nafion® 112 and Nafion® 115, making them particularly attractive as proton exchange membranes (PEMs) for direct methanol fuel cells (DMFC). The composite membrane with optimal SSi-GOs content exhibit over 38 and 17% higher power densities, respectively, than Nafion® 112 and Nafion® 115 membranes in DMFCs, offering the possibilities to reduce the DMFC membrane cost significantly while keeping high-performance.  相似文献   

17.

Abstract

Novel physically crosslinked polymer membranes were prepared by simply blending densely sulfonated poly(fluorenyl ether sulfone) with imidazolium-functionalized poly(ether sulfone). The blend showed well-defined ionic channels originating from the densely sulfonated structure and was physically crosslinked by ionic interactions. These two factors combined to enhance the physical stability and chemical stability of the prepared membranes while offering a conductivity over 0.24 S/cm at 80 °C for various amounts of crosslinker in the blend. The influence of this crosslinker amount on the chemophysical properties of the blend membranes was studied in a systematic way.  相似文献   

18.
After tethering sodium 2-mercaptoethanesulfonate (MTS) to the bromomethylated poly(arylene ether ketone) precursor, a novel clustered sulfonated poly(arylene ether ketone) containing flexible sulfoalkyl groups (MTSPAEK) was prepared and used as polymer electrolyte membrane for application in DMFCs. The chemical structure and the degree of grafting of MTSPAEK copolymers were identified by 1H NMR spectra. The resulted MTSPAEK copolymers exhibited excellent thermal stability (Td5% > 259 °C) and good mechanical properties (tensile strength at break > 52 MPa). Compared to conventional sulfonated aromatic hydrocarbon polymers, MTSPAEK membranes displayed enhanced oxidative stability in Fenton's reagent owing to the elimination of free radicals by the sulfide groups located on the polymer side chains. Especially, MTSPAEK-2.10 with the highest content of flexible sulfoalkyl groups exhibited a highest proton conductivity of 0.181 S cm−1 at 80 °C. It could be attributed to the obvious hydrophilic/hydrophobic phase-separated structure within the membrane, which was confirmed by AFM images. Moreover, MTSPAEK-2.10 membrane performed a peak power density of 70 mW cm−2 in DMFC when feeding with 2 M methanol at 80 °C, which was comparable to the performance of recast Nafion as reported. Therefore, the combination of good thermal stability and mechanical properties, good oxidative stability, and good methanol barrier performance of MTSPAEK membranes indicated that they have potential to be alternative materials for PEMs in DMFCs.  相似文献   

19.
Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on the main chain of the polymer by nitro groups and blended with Nafion® to attain composite membranes. The sulfonation, nitration and blending are achieved with a simple, inexpensive process, and the blended membranes containing the nitrated SPEEKs reveal a liquid-liquid phase separation. The blended membranes have a lower water uptake compared to recast Nafion®, and the methanol permeability is reduced significantly to 4.29 × 10−7-5.34 × 10−7 cm2 s−1 for various contents of nitrated SPEEK for S63N17, and 4.72 × 10−7-7.11 × 10−7 cm2 s−1 for S63N38, with a maximum proton conductivity of ∼0.085 S cm−1. This study examines the single-cell performance at 80 °C of Nafion®/nitrated SPEEK membranes with various contents of nitrated SPEEK and a degree of nitration of 23-25 mW cm−2 for S63N17 and 24-29 mW cm−2 for S63N38. Both the power density and open circuit voltage are higher than those of Nafion® 115 and recast Nafion®.  相似文献   

20.
To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the carboxyl groups in SPAEK-C and the hydroxyl groups in PVA. Fourier transform infrared spectroscopy is used to characterize and confirm the structure of SPAEK-C and the cross-linked membranes. The proton conductivity of the cross-linked membrane with 15% PVA in weight reaches up to 0.18 S cm−1 at 80 °C (100% relative humidity), which is higher than that of Nafion membrane, while the methanol permeability is nearly five times lower than Nafion. The ion-exchange capacity, water uptake and thermal stability are investigated to confirm their applicability in fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号