首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution spun polyacrylonitrile (PAN), PAN/multi-wall carbon nanotube (MWCNT), and PAN/single-wall carbon nanotube (SWCNT) fibers containing 5 wt.% carbon nanotubes were stabilized in air and activated using CO2 and KOH. The surface area as determined by nitrogen gas adsorption was an order of magnitude higher for KOH activated fibers as compared to the CO2 activated fibers. The specific capacitance of KOH activated PAN/SWCNT samples was as high as 250 F g−1 in 6 M KOH electrolyte. Under the comparable KOH activation conditions, PAN and PAN/SWCNT fibers had comparable surface areas (BET surface area about 2200 m2 g−1) with pore size predominantly in the range of 1–5 nm, while surface area of PAN/MWCNT samples was significantly lower (BET surface area 970 m2 g−1). The highest capacitance and energy density was obtained for PAN/SWCNT samples, suggesting SWCNT advantage in charge storage. The capacitance behavior of these electrodes has also been tested in ionic liquids, and the energy density in ionic liquid is about twice the value obtained using KOH electrolyte.  相似文献   

2.
Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the “soak” temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle’s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (ρ) of the car’s shell by about 0.5 lowered the soak temperature of breath-level air by about 5–6 °C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25 °C within 30 min is 13% less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (ρ = 0.35) for a black shell (ρ = 0.05) would reduce fuel consumption by 0.12 L per 100 km (1.1%), increasing fuel economy by 0.10 km L−1 [0.24 mpg] (1.1%). It would also decrease carbon dioxide (CO2) emissions by 2.7 g km−1 (1.1%), nitrogen oxide (NOx) emissions by 5.4 mg km−1 (0.44%), carbon monoxide (CO) emissions by 17 mg km−1 (0.43%), and hydrocarbon (HC) emissions by 4.1 mg km−1 (0.37%). Selecting a typical white or silver shell (ρ = 0.60) instead of a black shell would lower fuel consumption by 0.21 L per 100 km (1.9%), raising fuel economy by 0.19 km L−1 [0.44 mpg] (2.0%). It would also decrease CO2 emissions by 4.9 g km−1 (1.9%), NOx emissions by 9.9 mg km−1 (0.80%), CO emissions by 31 mg km−1 (0.79%), and HC emissions by 7.4 mg km−1 (0.67%). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.  相似文献   

3.
This paper presents a general model for air-side feed stream contamination that has the capability of simulating both transient and steady-state performance of a PEM fuel cell in the presence of air-side feed stream impurities. The model is developed based on the oxygen reduction reaction mechanism, contaminant surface adsorption/desorption, and electrochemical reaction kinetics. The model is then applied to the study of air-side toluene contamination. Experimental data for toluene contamination at four current densities (0.2, 0.5, 0.75 and 1.0 A cm−2) and three contamination levels (1, 5 and 10 ppm) were used to validate the model. In addition, it is expected that, with parameter adjustment, this model can also be used to predict performance degradation caused by other air impurities such as nitrogen oxides (NOx) and sulfur oxides (SOx).  相似文献   

4.
Emission factors of CO2, SO2 and NOx emitted from Iran’s thermal power plants are fully covered in this paper. To start with, emission factors of flue gases were calculated for fifty thermal power plants with the total installed capacity of 34,863 MW over the period 2007–2008 with regard to the power plants’ operation characteristics including generation capacity, fuel type and amount and the corresponding alterations, stack specifications, analysis of flue gases and physical details of combustion gases in terms of g kWh−1. This factor was calculated as 620, 2.57 and 2.31 g kWh−1 for CO2, SO2 and NOx respectively. Regarding these results, total emissions of CO2, SO2 and NOx were found to be 125.34, 0.552 and 0.465 Tg in turn. To achieve an accurate comparison, these values were compared with their alternatives in North American countries. According to this comparison, emission factor of flue gases emitted from Iran’s thermal power plants will experience an intensive decline if renewable, hydroelectric and nuclear types of energy are more used, power plants’ efficiency is increased and continuous emission monitoring systems and power plant pollution reduction systems are utilized.  相似文献   

5.
Carbide-derived carbons (CDCs) produced by chlorination of carbides offer great potential for precise pore size control at the atomic level, making them attractive candidates for energy storage media. CDCs activated with CO2 or KOH possess distinct improvements in porosity, displaying specific surface areas above 3000 m2 g−1 and pore volumes above 1.3 cm3 g−1. These correspond to gravimetric methane uptake of 16 wt% at 35 bar and 25 °C, close to the currently best reported material PCN-14, a metal-organic framework (MOF), at 35 bar and 17 °C or KOH activated anthracite at 35 bar and 25 °C. The best excess gravimetric methane uptake is obtained with a TiC-derived CDC activated with CO2 at 975 °C for 2 h, namely a very large surface area of 3360 m2 g−1 resulting in 18.5 wt% at 25 °C and 60 bar. To obtain realistic volumetric methane capacity, the packing density of completely dried CDC was measured, from which we obtain excess capacity of 145 v(STP) v−1 from CDC activated with CO2 at 875 °C for 8 h, 81% of the DOE target (180 v(STP) v−1) at 35 bar and 25 °C. From small-angle X-ray scattering (SAXS) measurements, pore radii of gyration (Rg) between 0.5 nm and 1 nm are determined. Temperature-dependent methane isotherms show that the isosteric heat of adsorption reaches 24 kJ mol−1 at the initial stage of low loading.  相似文献   

6.
Cobalt–nickel layered double hydroxides (CoxNi1−x LDHs) were deposited onto stainless steel electrodes by the potentiostatic deposition method at −1.0 V vs. Ag/AgCl using various molar ratios of Co(NO3)2 and Ni(NO3)2 in distilled water. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. A network of CoxNi1−x LDH nanosheets was obtained. The nature of the cyclic voltammetry and charge–discharge curves suggested that the CoxNi1−x LDHs exist in the form of solid solutions. The capacitive characteristics of the CoxNi1−x LDHs in 1 M KOH electrolyte showed that Co0.72Ni0.28 LDHs had the highest specific capacitance value, 2104 F g−1, which is also the highest yet reported value for oxide materials in general.  相似文献   

7.
A novel copper-based anode for low-temperature solid oxide fuel cells was prepared through the conventional ceramic technology and using CuO and SDC (Ce0.8Sm0.2O1.9) powders with controlled particle size. The new Cu–SDC anode also contained highly dispersed CeO2 and Ni particles to increase its surface area and fuel cell performance. The specific surface area of the Cu–SDC bare anode, CeO2 and Ni-dispersed phases were estimated to be 1.53, 39.4 and 86.4 m2 g−1, respectively. Solid oxide fuel cells having the new anode were tested for both humid hydrogen and methane. Power densities of ca. 250 mW cm−2 were achieved in H2 at 600 °C and in CH4 700 °C, even if the SDC–electrolyte supporting membrane was 250-μm thick. Short term stability tests (maximum 64 h) showed an initial impairment, but not dramatic, of the new anode performance and the formation of carbon deposits. The addition of MoOx to the new anode did not prevent the formation of carbon deposits.  相似文献   

8.
Highly active and stable carbon composite catalysts for oxygen reduction in PEM fuel cells were developed through the high-temperature pyrolysis of Co–Fe–N chelate complex, followed by the chemical post-treatment. A metal-free carbon catalyst was used as the support. The carbon composite catalyst showed an onset potential for oxygen reduction as high as 0.87 V (NHE) in H2SO4 solution, and generated less than 1% H2O2. The PEM fuel cell exhibited a current density as high as 0.27 A cm−2 at 0.6 V and 2.3 A cm−2 at 0.2 V for a catalyst loading of 6.0 mg cm−2. No significant performance degradation was observed over 480 h of continuous fuel cell operation with 2 mg cm−2 catalyst under a load of 200 mA cm−2 as evidenced by a resulting cell voltage of 0.32 V with a voltage decay rate of 80 μV h−1. Materials characterization studies indicated that the metal–nitrogen chelate complexes decompose at high pyrolysis temperatures above 800 °C, resulting in the formation of the metallic species. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface doped with nitrogen groups is catalytically active for oxygen reduction.  相似文献   

9.
Intermediate temperature solid oxide fuel cell cathode materials (Ba, Sr)CoxFe1−xO3−δ [x = 0.2–0.8] (BSCF), were synthesized by a glycine-nitrate process (GNP) using Ba(NO3)2, Sr(NO3)2, Co(NO3)2·6H2O, and Fe(NO3)3·9H2O as starting materials and glycine as an oxidizer and fuel. Electrolyte-supported symmetric BSCF/GDC/ScSZ/GDC/BSCF cells consisting of porous BSCF electrodes, a GDC buffer layer, and a ScSZ electrolyte were fabricated by a screen printing technique, and the electrochemical performance of the BSCF cathode was investigated at intermediate temperatures (500–700 °C) using AC impedance spectroscopy. Crystallization behavior was found to depend on the pH value of the precursor solution. A highly acidic precursor solution increased the single phase perovskite formation temperature. In the case of using a precursor solution with pH 2, a single perovskite phase was obtained at 1000 °C. The thermal expansion coefficient of BSCF was gradually increased from 24 × 10−6 K−1 for BSCF (x = 0.2) to 31 × 10−6 K−1 (400–1000 °C) for BSCF (x = 0.8), which resulted in peeling-off of the cathode from the GDC/ScSZ electrolyte. Only the BSCF (x = 0.2) cathode showed good adhesion to the GDC/ScSZ electrolyte and low polarization resistance. The area specific resistance (ASR) of the BSCF (x = 0.2) cathode was 0.183 Ω cm2 at 600 °C. The ASR of other BSCF (x = 0.4, 0.6, and 0.8) cathodes, however, was much higher than that of BSCF (x = 0.2).  相似文献   

10.
A novel doped activated carbon has been prepared from H2SO4-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l−1 KOH. The specific capacitance of the carbon is as high as 235 F g−1, the specific capacitance hardly decreases at a high current density 11 A g−1 after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors.  相似文献   

11.
Nickel oxides on carbon nanotube electrodes (NiOx/CNT electrodes) are prepared by depositing Ni(OH)2 electrochemically onto carbon nanotube (CNT) film substrates with subsequent heating to 300 °C. Compared with the as deposited Ni(OH)2 on CNT film substrates (Ni(OH)2/CNT electrodes), the 300 °C heat treated electrode shows much high rate capability, which makes it suitable as an electrode in supercapacitor applications. X-ray photoelectron spectroscopy shows that the pseudocapacitance of the NiOx/CNT electrodes in a 1 M KOH solution originates from redox reactions of NiOx/NiOxOH and Ni(OH)2/NiOOH. The 8.9 wt.% NiOx in the NiOx/CNT electrode shows a NiOx-normalized specific capacitance of 1701 F g−1 with excellent high rate capability due to the 3-dimensional nanoporous network structure with an extremely thin NiOx layer on the CNT film substrate. On the other hand, the 36.6 wt.% NiOx/CNT electrode has a maximum geometric and volumetric capacitance of 127 mF cm−2 and 254 F cc−1, respectively, with a specific capacitance of 671 F g−1, which is much lower than that of the 8.9% NiOx electrode. This decrease in specific capacitance of the high wt.% NiOx/CNT electrodes can be attributed to the dead volume of the oxides, high equivalent series resistance for a heavier deposit, and the ineffective ionic transportation caused by the destruction of the 3-dimensional network structure. Deconvolution analysis of the cyclic voltammograms reveals that the rate capability of the NiOx/CNT electrodes is adversely affected by the redox reaction of Ni(OH)2, while the adverse effects from the reaction of NiOx is insignificant.  相似文献   

12.
FIB-SEM, XPS and gas adsorption methods have been used for the characterisation of physical properties of microporous carbide derived carbon electrodes prepared from Mo2C at 600 °C (noted as CDC-Mo2C). Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for supercapacitors consisting of the 1 M Na2SO4, KOH, tetraethyl ammonium iodide or 6 M KOH aqueous electrolyte and CDC-Mo2C electrodes. The N2 sorption values obtained have been correlated with electrochemical characteristics for supercapacitors in various aqueous electrolytes. The maximum gravimetric energy, Emax, and gravimetric power, Pmax, for supercapacitors (taking into consideration the active material weight) have been obtained at cell voltage 0.9 V for 6 M KOH aqueous supercapacitor (Emax = 5.7 Wh kg−1 and Pmax = 43 kW kg−1). For 1 M TEAI based SC somewhat higher Emax (6.2 Wh kg−1) and comparatively low Pmax (7.0 kW kg−1) have been calculated.  相似文献   

13.
The effect of environmental contamination (NOx, SO2) on the performance of proton exchange membrane fuel cells (PEMFC) was studied. The performance of PEMFCs was tested for 100 h with different cathode reactants. According to the Ambient Air Quality Standard of PRC, three kinds of cathode gases were applied to operate the fuel cells, which were 1 ppm NO2/air, 1 ppm SO2/air and a mixture of contaminant gases. The gas mixture contained 0.8 ppm NO2, 0.2 ppm NO and 1 ppm SO2. Finally, the poisoning behavior and the mechanisms were analyzed by constant-current discharging and cycle voltammetry (CV). During the 100 h test, the potentials of the fuel cell degraded by 65%, 77% and 90% with 1 ppm SO2/air, a gas mixture and 1 ppm NO2/air, respectively.  相似文献   

14.
The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt-Ru electrocatalyst (HP 20% 1:1 Pt-Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50 M H2SO4 and H2SO4 (0.06-0.92 M) + CH3OH (0.10-1.00 M) solutions at 25.0-45.0 °C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3 × 10−6 A cm−2 and a Tafel slope of 113 mV dec−1 (α = 0.52) at 25.0 °C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4 × 10−6 A cm−2 and a Tafel slope of 199 mV dec−1 (α = 0.30) at 25.0 °C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt-CO and Ru-OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58 kJ mol−1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt-Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuOxHy, which enhances the process.  相似文献   

15.
In order to examine bubble evolution and discuss the effects of bubbles effect on the performance of microfluidic fuel cells, two 1.2-mm-depth microfluidic fuel cells employing 0.1-M H2O2 dissolved in 0.1-M NaOH solution and 0.05-M H2SO4 solution as fuel and oxidant, respectively, with transparent lids having width of 1.0 mm and 0.5 mm, are fabricated in the present study for both cell performance measurement and flow visualization. The results show that the present cells operating at either a higher volumetric flow or a smaller microchannel width yield both better performance and more violent bubble growth. The bubble growth rate, Qg, in a given microfluidic fuel cell is almost the same at different regions of that cell at a given volumetric flow rate, i.e. 10−5 cm3 s−1 and 5 × 10−5 cm3 s−1, respectively, for cells having widths of 0.5 mm and 1.0 mm at Ql = 0.05 mL min−1, and slightly increases at higher volumetric flow rates. Furthermore, the present study reports approximately constant values of Qg/CdA at various volumetric flow rates, which are 2 × 10−2 and 5 × 10−2 cm3 s−1 A−1, respectively, for cells having channel widths of 0.5 mm and 1.0 mm. In addition, the 0.5-mm-wide cell has higher cell output and performs more tortuous polarization curve.  相似文献   

16.
Amorphous RuO2·xH2O and a VGCF/RuO2·xH2O nanocomposite (VGCF = vapour-grown carbon fibre) are prepared by thermal decomposition. The morphology of the materials is investigated by means of scanning electron microscopy. The electrochemical characteristics of the materials, such as specific capacitance and rate capability, are investigated by cyclic voltammetry over a voltage range of 0–1.0 V at various scan rates and with an electrolyte solution of 1.0 M H2SO4. The specific capacitance of RuO2·xH2O and VGCF/RuO2·xH2O nanocomposite electrodes at a scan rate of 10 mV s−1 is 410 and 1017 F g−1, respectively, and at 1000 mV s−1 are 258 and 824 F g−1, respectively. Measurements of ac impedance spectra are made on both the electrodes at various bias potentials to obtain a more detailed understanding of their electrochemical behaviour. Long-term cycle-life tests for 104 cycles shows that the RuO2·xH2O and VGCF/RuO2·xH2O electrodes retain 90 and 97% capacity, respectively. These encouraging results warrant further development of these electrode materials towards practical application.  相似文献   

17.
Activated carbon fibers (ACFs) with super high surface area and well-developed small mesopores have been prepared by pyrolyzing polyacrylonitrile fibers and NaOH activation. Their capacitive performances at room and elevated temperatures are evaluated in electrochemical double layer capacitors (EDLCs) using ionic liquid (IL) electrolyte composed of lithium bis(trifluoromethane sulfone)imide (LiN(SO2CF3)2) and 2-oxazolidinone (C3H5NO2). The surface area of the ACF is as high as 3291 m2 g−1. The pore volume of the carbon reaches 2.162 cm3 g−1, of which 66.7% is the contribution of the small mesopores of 2-5 nm. The unique microstructures enable the ACFs to have good compatibility with the IL electrolyte. The specific capacitance reaches 187 F g−1 at room temperature with good cycling and self-discharge performances. As the temperature increases to 60 °C, the capacitance increases to 196 F g−1, and the rate capability is dramatically improved. Therefore, the ACF can be a promising electrode material for high-performance EDLCs.  相似文献   

18.
Influence of carboxymethylcellulose sodium salt (CMC) and carboxymethylcellulose-formate (CMC-f) binders on the cyclability of a MgH2-33.3% CMC type binder-33.3%Ct,x electrodes has been investigated for the first time. These electrodes show a large reversible capacity of 1800-1900 mAh g−1 at an average voltage of 0.5 V vs. Li+/Li° which is suitable for the negative electrode in lithium-ion batteries. Moreover, addition of CMC or CMC-f binder with Ct,x carbon leads to an improved capacity retention with 240 mAh g−1 and 542 mAh g−1, respectively, compare to 174 mAh g−1 for MgH2-18%Ct,x after 40 cycles.  相似文献   

19.
Thermal decomposition characteristic of calcium magnesium acetate (CMA), calcium acetate (CA) and magnesium acetate (MA) are investigated through thermogravimetric (TG) analysis at the heating rates of 5 K min−1, 7.5 K min−1, 10 K min−1 and 15 K min−1. After dehydration, the evaporation of carboxylic radical and carbon dioxide of CMA and CA exist in two separate segments, but for MA, this occurs together in just one segment without clear borderline. The curves of calculated CMA (C-CMA) and the deduced characteristic parameters illustrate the different characteristic of CA and MA from the corresponding components in CMA which may be the reason for the different performances of these sorbents in SO2 and NOx reduction. Also, the kinetic parameters of activation energy and reaction order of the three sorbents are calculated through Vyazovkin method and Avrami theory, respectively.  相似文献   

20.
xLiH + M composites, where M = Mg or Ti, are suggested as new candidates for negative electrode for Li-ion batteries. For this purpose, the xLiH + M electrode is prepared using the mechanochemical reaction: MHx + xLi → xLiH + M or by simply grinding a xLiH + M mixture. The most promising electrochemical behaviour is obtained with the (2LiH + Mg) composite prepared via a mechanochemical reaction between MgH2 and metallic Li leading to a very divided composite in which Mg crystallites of 20 nm size are embedded in a LiH matrix. Reversible capacities of 1064 mAh g−1 (three times as much as the one of graphite) and 600 mAh g−1 are reached for these phase mixtures after 1 and 28 h of grinding in vertical and planetary mill, respectively. The (2LiH + Ti) mixture prepared via the mechanochemical reaction between TiH2 and Li exhibits a reversible capacity of 428 mAh g−1. From X-ray diffraction measurements, the performances of the electrodes are attributed to the electrochemical conversion reaction: M + xLiH ↔ MHx + xLi+ + xe (M = Mg, Ti) followed for M = Mg by an alloying process where M reacts with lithium ions to form Mg1−xLix alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号