首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly porous polyimide film with tunable pore size, porosity and thickness is synthesized and used as a matrix to construct a Nafion-infiltrated composite membrane. A very efficient way for an easy and complete infiltration of the proton-conducting polymer into this substrate is developed, which is usually a major problem for composite membranes. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced (80 times), where as while high proton conductivity (comparable with Nafion) and mechanical strength (4 times stronger than Nafion) is still maintained. This membrane demonstrates significantly improved cell performance compared with the Nafion membrane and is a promising candidate for use in direct methanol fuel cells.  相似文献   

2.
Composite membranes consisting of polyvinylidene fluoride (PVdF) and Nafion have been prepared by impregnating various amounts of Nafion (0.3–0.5 g) into the pores of electrospun PVdF (5 cm × 5 cm) and characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and proton conductivity measurements. The characterization data suggest that the unique three-dimensional network structure of the electrospun PVdF membrane with fully interconnected fibers is maintained in the composite membranes, offering adequate mechanical properties. Although the composite membranes exhibit lower proton conductivity than Nafion 115, the composite membrane with 0.4 g Nafion exhibits better performance than Nafion 115 in direct methanol fuel cell (DMFC) due to smaller thickness and suppressed methanol crossover from the anode to the cathode through the membrane. With the composite membranes, the cell performance increases on going from 0.3 to 0.4 g Nafion and then decreases on going to 0.5 g Nafion due to the changes in proton conductivity.  相似文献   

3.
The main problem with using membranes in a direct methanol fuel cell is the proton conductivity and methanol permeability that reduces the performance of the membrane. In addition, the cost of the membrane is very high and remains the main issue for the commercialization of Direct Methanol Fuel Cell (DMFC). To solve this problem, this study introduces rice husk ash (RHA) as a bio-filler in sulfonated polyimide (SPI) composite membranes. The bio-filler is expected to reduce the cost of the membrane and at the same time increase the performance of the membrane. In this work, agricultural rice husk waste was subjected to oxidation to produce RHA. The composite membrane displayed maximum values for the ion exchange capacity (0.2829 mmol g−1) and water uptake (55.24%). It was observed that the proton conductivity (0.2058 S cm−1) was higher than that in the pristine SPI membrane. The methanol permeability of the SPI-RHA membranes was reduced to 24 times lower than that of the pristine SPI membrane. In the DMFC passive single-cell test, the maximum power density was increased from 8.0 mW cm−1 to 13.0 mW cm−1 using a composite membrane with 15 wt % RHA. These composite membranes have proven that the addition of RHA enhanced the performances of the fuel cell and have a very high potential to act as an alternative bio-filler for the membranes used in a direct methanol fuel cell.  相似文献   

4.
In this work, composite membranes for a direct methanol fuel cell (DMFC) were prepared using a spraying method to improve cell performance especially at a high methanol concentration. Nafion polymer and mordenite as a filler were used for the composite membrane preparation using a spraying method and a conventional solution casting method and the membranes from the two methods were compared. SEM images showed that a more homogeneous composite membrane could be obtained using the spraying method. The effect of mordenite content was also studied. The membranes were consequently characterized and tested in DMFC operation. The results were compared to those prepared using the solution casting method at 30, 50, and 70 °C with methanol concentrations of 2, 4, and 8 M. It was found that the membrane with 5 wt.% mordenite from the spraying method showed a vast improvement in DMFC performance. When the cell was operated at 70 °C, the maximum power density of 5 wt.% mordenite from the spraying method was higher than that of commercial membrane and 5 wt.% from the solution casting method. Power densities from the 5 wt.% sprayed membrane were higher by around 29%, 40%, and 60% at 2, 4, and 8 M methanol concentration, respectively.  相似文献   

5.
The zwitterion-coated polyamidoamine (ZC-PAMAM) dendrimer with ammonium and sulfonic acid groups has been synthesized and used as filler for the preparation of PBI-based composite membranes for direct methanol fuel cells. Polybenzimidazole (PBI)/ZC-PAMAM dendrimer composite membranes were prepared by casting a solution of PBI and ZC-PAMAM dendrimer, and then evaporating the solvent. The presence of ZC-PAMAM dendrimer was confirmed by FT-IR and energy-dispersive X-ray spectroscopy (EDS) mapping of sulfur and oxygen elements. The water uptake, swelling degree, proton conductivity, and methanol permeability of the membranes increased with the ZC-PAMAM dendrimer content. For the PBI/ZC-PAMAM-20 membrane with 20 wt% of ZC-PAMAM, it shows a proton conductivity of 1.83 × 10−2 S/cm at 80 °C and a methanol permeability of 5.23 × 10−8 cm2 s−1. Consequently, the PBI/ZC-PAMAM-20 demonstrates a maximum power density of 26.64 mW cm−2 in a single cell test, which was about 2-fold higher than Nafion-117 membrane under the same conditions.  相似文献   

6.
This report details development of an air-breathing direct methanol alkaline fuel cell with an anion-exchange membrane. The commercially available anion-exchange membrane used in the fuel cell was first electrochemically characterized by measuring its ionic conductivity, and showed a promising result of 1.0 × 10−1 S cm−1 in a 5 M KOH solution. A laboratory-scale direct methanol fuel cell using the alkaline membrane was then assembled to demonstrate the feasibility of the system. A high open-circuit voltage of 700 mV was obtained for the air-breathing alkaline membrane direct methanol fuel cell (AMDMFC), a result about 100 mV higher than that obtained for the air-breathing DMFC using a proton exchange membrane. Polarization measurement revealed that the power densities for the AMDMFC are strongly dependent on the methanol concentration and reach a maximum value of 12.8 mW cm−2 at 0.3 V with a 7 M methanol concentration. A durability test for the air-breathing AMDMFC was performed in chronoamperometry mode (0.3 V), and the decay rate was approximately 0.056 mA cm−2 h−1 over 160 h of operation. The cell area resistance for the air-breathing AMDMFC was around 1.3 Ω cm2 in the open-circuit voltage (OCV) mode and then is stably supported around 0.8 Ω cm2 in constant voltage (0.3 V) mode.  相似文献   

7.
The proton exchange membrane is one of the critical parts of a direct methanol fuel cell. High proton conductivity and low methanol permeability are required. To enhance the performance of a direct methanol fuel cell, graphene oxide was incorporated to Nafion-mordenite composite membranes to enhance the compatibility and to decrease methanol permeability. It was found that the membrane with silane grafted on graphene oxide-treated mordenite with a graphene oxide content of 0.05% presented the highest proton conductivity (0.0560 S·cm−1, 0.0738 S·cm−1 and 0.08645 S·cm−1 at 30, 50, and 70 °C, respectively). This was about 1.6-fold of the recast Nafion and commercial Nafion 117 and was about 1.5-fold of that without graphene oxide incorporation. Finally, the operating condition was optimized using response surface methodology and the maximum power density was investigated. Power density of about 4-fold higher than that of Nafion 117 was obtained in this work at 1.84 M and 72 °C with a %Error between the model prediction and the fuel cell experiment of 0.082%.  相似文献   

8.
A series of organic silica/Nafion composite membranes has been prepared by using organic silane coupling agents (SCA) bearing different hydrophilic functional groups. The physico-chemical properties of the composite membranes have been characterized by electrochemical techniques, scanning electron microscopy (SEM), diffuse-reflection Fourier-transform infrared spectroscopy (DRFTIR), wide-angle X-ray diffraction (WAXRD), thermogravimetric analysis (TGA), and thermogravimetric mass spectrometry (TG-MS). It has been found that some organic silica/Nafion composite membranes modified by organic silane agents bearing amino groups exhibit extremely low methanol crossover and proton conductivity values, e.g., a composite membrane shows a proton conductivity that is about five orders of magnitude lower and a methanol permeability that is about three orders of magnitude lower than those of a Nafion117 membrane. However, under optimized conditions for controlling the basicity of the amino groups, we also obtained a composite membrane with 89% lower methanol permeability and 49% lower proton conductivity compared with Nafion117 membrane. The results clearly demonstrate that the diffusion of methanol and protons through the membrane can be controlled by adjusting the functional groups on the organic silica.  相似文献   

9.
Zeolite beta particles with different sizes and narrow size distribution were hydrothermally synthesized and incorporated into chitosan (CS) matrix to prepare CS/zeolite beta hybrid membranes for direct methanol fuel cell (DMFC). It was found that the chitosan membrane filled by zeolite beta particles about 800 nm in size exhibited the lowest methanol permeability, which can be ascribed to their optimum free volume and methanol diffusion characteristics. To further improve the performances of CS/zeolite beta hybrid membranes, zeolite beta particles about 800 nm in size were sulfonated via three different approaches. The results indicated that the introduction of sulfonic groups could reduce the methanol permeability further as a result of the enhanced interfacial interaction between zeolite beta and chitosan matrix. Furthermore, in terms of the overall selectivity index, CS/zeolite beta hybrid membranes were comparable to Nafion® 117 membrane at low methanol concentration (2 mol L−1) and much better at high methanol concentration (12 mol L−1).  相似文献   

10.
Nanotechnology has recently generated a lot of attention and high expectations not only in the academic community but also among investors, scientists and researchers in both government and industry sectors. Its unique capability to fabricate new structures at the atomic scale has already produced novel materials and devices with great potential applications in a wide number of fields. Up to now, the electrodes in direct methanol fuel cells (DMFCs) have generally been based on the porous carbon gas diffusion electrodes that are employed in proton exchange membrane fuel cells. Typically, the structure of such electrodes is comprised of a catalyst layer and a diffusion layer, the latter being carbon cloth or carbon paper. It is a challenge to develop an electrode with high surface area, good electrical conductivity and suitable porosity to allow good reactant flux and high stability in the fuel cell environment. This paper presents an overview of electrode structure in general and recent material developments, with particular attention paid to the application of nanotechnology in DMFCs.  相似文献   

11.
This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30–40 °C) and high temperatures (100–120 °C). DMFC power densities were about 140 mW cm−2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm−2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm−2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.  相似文献   

12.
The current density in the fuel cell is the direct consequence of reactions taking place over the active surface area. Thus, measurement of its distribution will lead to identification of the location and nature of reactions and will give opportunity to improve the overall efficiency of fuel cells. Within this study, the current density distribution in a direct methanol fuel cell was analyzed by segmenting the current collector into nine sections. Besides, the effect of the different operating parameters such as molarity, flow rate and reactant gas on the current density distribution was analyzed.  相似文献   

13.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

14.
Although zeolites are introduced to decrease methanol crossover of Nafion membranes for direct methanol fuel cells (DMFCs), little is known about the effect of their intrinsic properties and the interaction with the ionomer. In this work, Nafion-Faujasite composite membranes prepared by solution casting were characterized by extensive physicochemical and electrochemical techniques. Faujasite was found to undergo severe dealumination during the membrane activation, but its structure remained intact. The zeolite interacts with Nafion probably through hydrogen bonding between Si-OH and SO3H groups, which combined with the increase of the water uptake and the water mobility, and the addition of a less conductive phase (the zeolite) leads to an optimum proton conductivity between 0.98 and 2 wt% of zeolite. Hot pressing the membranes before their assembling with the electrodes enhanced the DMFC performance by reducing the methanol crossover and the serial resistance.  相似文献   

15.
A long-term durability test has been conducted for a direct methanol fuel cell (DMFC) using the commercial hydrocarbon membrane and Nafion ionomer bonded electrodes for 500 h. Membrane electrode assembly (MEA) made by a decal method has experienced a performance degradation about 34% after 500 h operation. Cross-sectional analysis of the MEA shows that the poor interfacial contact between the catalyst layers and membrane in the MEA has further deteriorated after the durability test. Therefore, the internal resistance of a cell measured by electrochemical impedance spectroscopy (EIS) has considerably increased. The delamination at the interfaces is mainly attributed to incompatibility between polymeric materials used in the MEA. Furthermore, X-ray diffraction (XRD) analysis reveals that the catalyst particles have grown; thereby decreasing the electrochemical surface area. Electron probe micro analysis (EPMA) shows a small amount of Ru crossover from anode to cathode; and its effect on the performance degradation has been analyzed.  相似文献   

16.
Consumers’ demand for portable audio/video/ICT products has driven the development of advanced power technologies in recent years. Fuel cells are a clean technology with low emissions levels, suitable for operation with renewable fuels and capable, in a next future, of replacing conventional power systems meeting the targets of the Kyoto Protocol for a society based on sustainable energy systems. Within such a perspective, the objective of the European project MOREPOWER (compact direct methanol fuel cells for portable applications) is the development of a low-cost, low temperature, portable direct methanol fuel cell (DMFC; nominal power 250 W) with compact construction and modular design for the potential market area of weather stations, medical devices, signal units, gas sensors and security cameras. This investigation is focused on a conceptual study of the DMFC system carried out in the Matlab/Simulink® platform: the proposed scheme arrangements lead to a simple equipment architecture and a efficient process.  相似文献   

17.
We report an algorithm for real-time control of the fuel of a DMFC. The MEA voltage decay coefficients [e1, e2], and I-V-T, M′-I-T, and W′-I-T curves (where I is the current, V the voltage, T the temperature, and M′ and W′ the methanol and water consumption rates, respectively) of n fuels with specified methanol concentrations CM,k (k = 1, 2,…, n) are pre-established and form (I,V,T), (M′,I,T), and (W′,I,T) surfaces for each CM,k. The in situ measured (I,V,T)u after voltage decay correction is applied to the n preset (I,V,T) surfaces to estimate CM,u (the CM corresponding to (I,V,T)u) using an interpolation procedure. The CM,u is then applied to the n preset (M′,I,T) and (W′,I,T) surfaces to estimate cumulated “methanol” and “water” consumed quantities . Thus in a real-time system, the CM and total quantity of fuel can be controlled using the estimated CM,u and cumulated “methanol” and “water” consumed quantities.  相似文献   

18.
Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm−2. The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W−1, and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.  相似文献   

19.
The cathode catalyst layer in direct methanol fuel cells (DMFCs) was prepared using polystyrene beads as a pore former. Field emission scanning electron microscopy showed that the catalyst layer with the pore former contained pores with a uniform shape and size. Mercury intrusion porosimetry showed that the pore former increased the volume of secondary pores in the catalyst layer. The electrochemical properties of the membrane electrode assembly (MEA) were evaluated by current–voltage polarization measurements, electrochemical impedance spectroscopy and cyclic voltammetry. These results suggest that the catalyst layer with the pore former reduces the mass transfer resistance and improves the cell performance by approximately 50% through modification of its morphology.  相似文献   

20.
The hyperbranched macromolecule (HBM) polyamide proton exchange membrane with uniform 3D matrix topology is beneficial to the enhancement of proton conductivity. In order to extend the application of HBM in direct methanol fuel cell (DMFC), graphene oxide (GO) and graphene quantum dot (GQD) are incorporated into HBM to enhance the proton/methanol selectivity of the membrane. The functional groups on GO and GQD surface would interact with –SO3H groups in HBM by the hydrogen-bond interaction and participate in the proton conductive channel construction. And the GO and GQD in the composite can effectively prevent the permeation of methanol molecules. Most important, the HBM membrane filled by GQD (GQD-HBM) can effectively avoid large scale phase separation which occurs in HBM membrane filled by GO (GO-HBM) due to the greater size of GO. Proton conductivity of GQD-HBM (0.30 S/cm) is 17% improved compared with the pristine HBM while methanol permeability is significantly reduced by ca. 50% due to the physical barrier of GQD. The proton/methanol selectivity is therefore enhanced by more than 80% and the DMFC performance is also significantly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号