首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the influence of multistep up to 650°C on the magnitude of resistivity and hardness of hot-rolled sheets of low-alloyed aluminum alloys containing up to 0.5 wt % Zr. Experimental samples were formed in conditions approaching those implemented for industrial installations of continuous casting and rolling. Testing procedures, including heat treatment, are described. Metallographic analysis of a cast (initial) structure and the structure of experimental samples passing the deformation was performed. Dependences of resistivity (ρ) and hardness on the temperature of the last annealing step are constructed by the results of physicomechanical tests. It is established using the computational and experimental methods that the magnitude of ρ mainly depends on the zirconium concentration in the aluminum alloy. The optimal ratio between the zirconium concentration in the alloy and annealing temperature, which makes it possible to attain the best combination of characteristics of hardness and resistivity, is determined.  相似文献   

2.
冷轧薄板的生产过程中,金属晶粒经过冷变形,晶粒将随着变形方向拉长。这种变化将导致力学性能等的变化。再结晶退火是冷轧薄板生产过程中的一个重要过程。因此,研究冷轧薄板再结晶温度以及压下率对再结晶温度的影响,对冷轧薄板生产具有重要的实际意义,能够为冷轧薄板生产时退火工艺制度的制定提供理论依据。  相似文献   

3.
在13.36Cr-1.12Ni-11.2Mn节镍型奥氏体不锈钢基础上降Mn加Cu,优化开发14.0Cr-1.1Ni-9.2Mn-0.30Cu不锈钢,并研究不同化学成分奥氏体不锈钢固溶处理、冷轧退火后的金相组织、显微织构、力学性能及成形性能,分析了奥氏体稳定性和冷轧形变诱导马氏体相变的控制规律。结果表明:14.0Cr-1.1Ni-9.2Mn-0.30Cu与13.36Cr-1.12Ni-11.2Mn不锈钢力学性能相当,固溶处理、冷轧退火后奥氏体组织再结晶充分,冷轧平均晶粒尺寸分别为12.6μm、14.0μm,显微织构为铜织构{112}<111>;14.00Cr-1.1Ni-9.2Mn-0.30Cu不锈钢的杯突值和极限拉深比分别为16.15和0.46,优于13.36Cr-1.12Ni-11.2Mn不锈钢;14.0Cr-1.1Ni-9.2Mn-0.30Cu与13.36Cr-1.12Ni-11.2Mn钢Md30/50分别为87.02℃和83.55℃,Md30/50高,则奥氏体稳定性差,形变诱导马氏体量和冷轧变形抗力大,退火后硬度高。通过将冷轧退火工艺速度由10 m/min降低至9 m...  相似文献   

4.
Calcium is one of the most widespread and, consequently, low-cost metals on Earth. It has been applied for a long time in modifying and alloying alloys of heavy metals, in particular, lead and copper. It is used as a modifier in cast irons and steels. Calcium began being applied for alloying light alloys based on aluminum and magnesium comparatively recently. In this review, the application fields of metallic calcium and its influence on the structure and properties of various alloys are considered. Alloys based on aluminum–calcium eutectic have been systematically investigated over last few years, and it has been established that they possess casting properties no worse than these of silumins, and they can be hot-rolled and cold-rolled with a high degree of deformation. Ternary and more complex phase diagrams of systems including calcium are constructed and multicomponent alloys based on them are investigated. All these circumstances make it possible to outline several groups of new promising Ca-containing aluminum alloys: (i) alloys hardening without quenching due to the isolation of nanodimensional particles of Al3Zr, Al3Sc, and Al3(Zr,Sc) phases; (ii) high-strength alloys alloyed with traditional hardening elements of the aluminum solid solution, such as zinc and magnesium; and (iii) composite alloys having more than 20% eutectic intermetallic compounds in the structure. All these materials have reduced density, an improved set of operational properties, increased corrosion resistance, and high manufacturability when producing cast and deformed half-finished products.  相似文献   

5.
Results of investigations into the formation of the crystallographic orientation of the structure and anisotropy of properties during rolling sheets of the aluminum–lithium 1420 alloy of the Al–Mg–Li system are given. Hot-rolled billets of the 1420 alloy were cold-rolled with intermediate quenching according to the following schedule: 7.3 mm → 4.8 mm → 3.0 mm → 1.8 mm. The samples were selected after each passage to perform mechanical testing and analyze the structure using optical microscopy and diffractometry. A deformed fibrous structure and considerable anisotropy of mechanical properties is characteristic of sheets of all considered states. Herewith, the maximal plasticity is observed at an angle of 45° to the rolling direction. The character of anisotropy of properties formed at the hot-rolling stage is not varied during cold rolling. Sheets of the 1420 alloy have a sharp deformation texture at all rolling stages due to the conservation of the unrecrystallized structure. For example, when analyzing pole figures and preferential orientations, an increase in volume fractions of rolling texture is revealed (the slow one of the brass type and more rapid of the S type) with the rise of summary deformations of cold rolling. The recrystallization texture (of the R type) is present in small amounts only after hot rolling. The volume fraction of the texture-free component decreases with an increase in summary deformations. It is concluded based on these results that, in order to decrease the fraction of the deformation texture and lower anisotropy of properties in sheets of the 1420 alloy, it is first and foremost necessary to provide the running of recrystallization at the hot-rolling stage in order to fabricate the recrystallized hot-rolled billet for subsequent cold rolling.  相似文献   

6.
实验研究了汽车用冷轧超低碳烘烤硬化钢板的成分、热轧冷轧及退火工艺对钢组织性能的影响规律,并分析了冷轧后连续退火和罩式退火不同条件下钢中析出第2相粒子形态和钢板的织构变化。  相似文献   

7.
In the current experimental investigation, a comparative study has been carried out to understand the development of texture under different conditions, viz. controlled hot-rolled, one-step cold-rolled (CR) and annealed, and two-step cold-rolled and annealed conditions. Mechanical properties were determined and experimental formability limit diagrams (FLDs) were plotted after both one-step and two-step cold-rolled and annealed conditions. From the tabulated data, it was found that hot band texture of 85 to 90 pct deformation was strong and the main orientations were ( 112 )[ 1[`1]0 ] \left( {112} \right)\left[ {1\bar{1}0} \right] and ( 332 )[ [`1][`1]3 ]. \left( {332} \right)\left[ {\bar{1}\bar{1}3} \right]. One-step cold rolling developed the strong and uniform α-fiber and γ-fiber at 80 pct cold reduction. The strong and uniform new γ-fiber was obtained at the one-step 80 pct CR annealed condition. In addition, the highest drawability was found at the one-step 80 pct CR annealed condition. In two-step cold rolling, orientation ( 223 )[ 1[`1]0 ] \left( {223} \right)\left[ {1\bar{1}0} \right] was the main texture component along with extremely strong γ-fiber. Moreover, batch annealing of two-step cold-rolled steel sheets developed exceptionally strong and uniform γ-fiber, and all mechanical properties were enhanced significantly except yield strength. From FLDs, it is observed that the formability properties of interstitial free (IF) high-strength (HS) steel sheets were excellent at both one-step and two-step cold-rolled and annealed conditions. However, the two-step cold-rolling and annealing process was found to be superior to the one-step process. The data of this investigation may be used at the industrial level to design the entire processing of IF-HS steel sheets.  相似文献   

8.
Metallurgical and Materials Transactions A - The annealing kinetics of cold-rolled AA5182 and AA5657 aluminum alloy sheets have been investigated and compared. The microstructures of a series of...  相似文献   

9.
朱晓东 《钢铁》2012,47(4):84-88
 冷轧马氏体钢采用水淬退火机组生产,可以节约合金元素,同时获得高强度,符合汽车用钢高强度和减重节能的要求。以冷轧低碳马氏体钢为研究对象,研究了连续退火工艺对马氏体钢板力学性能的影响,发现淬火温度、缓冷速度和回火温度均对马氏体钢的强度有很大影响。在奥氏体缓慢分解的较高温度区间开始淬火有利于马氏体钢强度的稳定。回火降低马氏体钢的抗拉强度,对屈服强度有提高的作用,在200~300℃之间回火,冷弯性能基本不变或有所提高,未发现在240℃以上过时效出现显著的冷弯性能下降的现象。  相似文献   

10.
王帅  陈伟健  赵征志  赵小龙 《钢铁》2021,56(3):23-28
 为了研究临界退火中锰钢的微观组织演变规律以及组织对力学性能和变形行为的影响,对冷轧中锰钢(0.1C-7Mn-0.35Si)在570~650 ℃范围内进行了临界退火处理。研究结果表明,随着退火温度升高,双相“奥氏体+铁素体”组织逐步趋于等轴化且晶粒有粗化的趋势,并且在650 ℃时出现了马氏体组织;试验钢的抗拉强度随温度升高而增加,而伸长率和屈服强度均呈下降趋势,局部不均匀变形带随着退火温度升高逐步弱化,在620和650 ℃时完全消失;在相对较高的退火温度下,粗化的等轴奥氏体晶粒中形变诱导马氏体相变的增强和大尺寸的铁素体晶粒中动态回复的减弱,以及更高温度时马氏体的引入等,均改善了屈服阶段的加工硬化能力,从而有效减弱或抑制吕德斯带的扩展。  相似文献   

11.
ДрицМ .Е .[1,2 ] reportedthatscandium ,com paringwiththeotherrareelements ,isthemosteffec tiveadditiontopromotethestrengthofaluminumal loys .Thestrengthofas extrusionAl 6 5Mgalloyrodcontaining 0 .2 %Screaches 4 0 0MPa (σb)and 2 5 0MPa (σ0 .2 ) ,higherthanAl 6 5Mgalloywithoutscandiumonetime .Willey[3] fromAluminumCompa nyofAmericapatentedthefirstaluminumscandiumalloyin 1971.Since 70′soflastcentury ,theformerSovietUnionengagedcompletelyresearchonthepro ductionandapplicationofalum…  相似文献   

12.
进行了TC16钛合金板材多道次冷轧试制,利用光学显微镜、 扫描电镜和X射线衍射等手段研究了变形量对冷轧板材微观组织与力学性能的影响.结果表明:α+β两相TC16钛合金板材冷轧加工是可行的,其极限冷变形量达到79%,冷轧板材表面无裂纹.大幅度冷轧变形后,TC16钛合金组织为分布均匀的纤维状结构,且存在极少量未充分变形的α...  相似文献   

13.
Annealing process will have greatly influence on microstructure of V,Ti and N microalloyed low carbon steel sheets.In this paper,the experimental steels with given amount of V,Ti and N elements were annealed at 4 routes to simulate batch annealing and continuous annealing processes,respectively.The enameling tests for the annealed steel sheets were undergone in same enameling and firing processes to study the relationship between microstructure and fishscale.The result shows that the cold-rolled steel sheets annealed at 750 ℃for 6 minutes even for 30 minutes exhibit excellent fishscale resistance.  相似文献   

14.
利用背散射电子衍射(EBSD)技术,研究了不同连续退火温度下Ti-IF钢微观取向的演变规律,并对不同退火温度下退火板的力学性能进行研究。研究发现当退火温度较低时(780℃)织构分布相对随机,随退火温度升高,ND∥〈111〉织构比例增加,在860℃退火时得到的r值最高,同时ND∥〈111〉织构比例最高,但当退火温度继续升...  相似文献   

15.
张雄  温治  豆瑞锋  周钢  李志强 《工程科学学报》2014,36(12):1650-1655
针对现场生产的430不锈钢冷轧板,通过高温连续退火实验研究了退火温度对材料显微组织、强度、塑性以及各向异性性能的影响.通过实验得到了合理的两段式加热连续退火工艺:选取中间温度为600℃,加热II段的加热速率为2.3℃·s-1,最高加热温度为840℃.随着退火温度的升高,薄板的屈服强度和硬度呈明显的两阶段降低趋势,延伸率呈"S"型趋势增加,平均塑性应变比基本保持不变(1.25左右),而轧制平面各向异性指数有一定的降低.针对430不锈钢冷轧板分别建立了屈服强度与退火软化率和延伸率之间的定量关系.   相似文献   

16.
亓伟伟 《中国冶金》2015,25(5):23-26
65Mn经热处理后综合力学性能优越,其冷轧钢带用途广泛,可制造弹簧、锯片等。为确定65Mn冷轧宽钢带力学性能随冷轧总变形率变化的规律,对经过不同程度的冷轧后的65Mn冷轧硬态及退火态宽钢带的力学性能进行了研究,研究得出的规律可用于对65Mn冷轧宽钢带力学性能进行预测及指导生产实践。采用65Mn原料经预退火后再进行冷轧的工艺生产的退火宽钢带力学性能稳定,塑性较好。  相似文献   

17.
The structure and the properties of an Mg–Y–Nd–Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20–300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30–100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.  相似文献   

18.
This study investigates the effect of austenite reverted transformation (ART) annealing temperature and temper-rolling on the microstructure, mechanical properties, and deformation behaviors of cold-rolled Fe–0.25C–5.9Mn–1.0Al–1.57Si transformation-induced plasticity (TRIP) steel. The cold-rolled steel annealed at 700 °C demonstrates excellent mechanical properties. The ultimate tensile strength, total elongation, and product of strength and elongation are observed as 1212 MPa, 31.8%, and 38.6 GPa%, respectively. The excellent combination of strength and ductility is related to the discontinuous TRIP effect; still, an inhomogeneous deformation is observed during tensile deformation, known as the Lüders strain. Temper-rolling is used for the ART-annealed specimens at 700 and 720 °C, and yield point elongation decreases when temper-rolling reduction increases. When the temper-rolling reduction increases by 8%, the yield point elongation of the specimen annealed at 700 °C is noted at 1%, while the specimen annealed at 720 °C exhibits continuous yielding. The strain-induced martensite transformation and increased dislocation density in the ferritic matrix improve the early-stage strain hardening rate, thus suppressing the Lüders band's formation.  相似文献   

19.
To establish the range of manganese content in phosphorus-containing low-carbon steels that will provide superiorr m andAr values in cold-rolled sheets, the effects of manganese on annealing texture, plastic anisotropy, and mechanical properties of steels containing 0.067 pct P were studied. Both vacuum and air-melted laboratory heats were investigated. Results show that highr m and low Ar values, a desirable combination for deepdrawing applications, can be obtained with manganese contents up to 0.25 pct, when the hot-rolled band is cold-rolled 80 pct, and annealed at 710 or 780° (1310 or 1435∮F) for 20 h. Annealing at the higher temperature developed better plastic anisotropy than did annealing at the lower temperature. Ther m values of the air-melted steels were superior to those of the vacuum-melted steels. It is believed that complex interactions of manganese with other elements in the steel, such as sulfur and oxygen, and possibly carbon, influenced the annealing behavior of the steels.  相似文献   

20.
研究了α+γ双相区热处理对430铁素体不锈钢热轧板显微组织和力学性能的影响,并与工业罩式炉退火后的热轧板显微组织和力学性能进行了对比分析。结果表明:在双相温度区间对430不锈钢热轧板进行热处理,分割了热轧板轧向的条带状组织,抑制了聚集组织的形成。与常规罩式炉退火工艺相比,双相区热处理显著提高了430不锈钢热轧板的伸长率,降低了屈服强度和硬度,有利于改善最终冷轧产品的冲压性能和抗起皱性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号