首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

2.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

3.
H. Xia  L. Lu  Y.S. Meng 《Electrochimica acta》2007,52(8):2822-2828
LiNi0.5Mn1.5O4 thin films were prepared by pulsed laser deposition (PLD) on stainless steel substrates. The growth of the films has been studied as a function of substrate temperature and oxygen partial pressure in deposition, using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Electrochemical properties of LiNi0.5Mn1.5O4 thin film cathodes were investigated using cyclic voltammetry and galvanostatic charge/discharge against a lithium anode. The initial capacity and capacity retention of the films are highly dependent on the crystallinity and purity of the films. LiNi0.5Mn1.5O4 thin films grown at 600 °C in an oxygen partial pressure of 200 mTorr are well crystallized with high purity, exhibiting excellent capacity retention between 3 and 5 V with a LiPF6-based electrolyte.  相似文献   

4.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

5.
LiNi0.5Mn1.5O4 spinel has been prepared by an emulsion drying method which can intermix cations very homogeneously at the atomic scale. When the emulsion-dried precursor was fired at 750 °C for 24 h, the observed particle of the LiNi0.5Mn1.5O4 was nano-crystallite, being about 50 nm in diameter. The Rietveld refinement result clearly exhibited that the cubic spinel phase was successfully formed without any secondary phases, indicating that Li and transition metal cations occupied the 8a and 16d sites of the Fd3m structure, respectively. Li deintercalation from the spinel framework brings about a shift in the XRD peak toward higher angles and a peak splitting in the composition range δ=0-0.2 in LiδNi0.5Mn1.5O4, implying that the host structure is progressively oxidized from Ni2+ to Ni4+ and accompanied by a two phase reaction. The sample calcined at 750 °C for 24 h showed the best cyclability upon cycling due probably to better crystallinity and a smaller particle size. We suggest that this material can be used as a 4.5 V cathode material for Li-ion battery.  相似文献   

6.
LiNi0.5Mn1.5O4 was prepared by a spray drying and post-annealing process. The re-annealing treatment in O2 could not only decrease the Mn3+ content, but also increased the reversible capacity and significantly improve the rate capability compared to the untreated material. Moreover, the cyclic performance of the LiNi0.5Mn1.5O4 depends on both the cycling rate and operating temperature, which was ascribed to the difference between the phase transition rates between cubic I ↔ cubic II and cubic II ↔ cubic III.  相似文献   

7.
Qian Shi 《Electrochimica acta》2010,55(22):6645-25518
The kinetic behaviors of Li-ion insertion/extraction in LiV3O8 thin film have been investigated using cyclic voltammetry (CV), potentiostatic intermittent titration (PITT) and electrochemical impedance spectroscopy (EIS) method. This LiV3O8 thin film with a mixed amorphous-nanocrystalline microstructure was fabricated by RF sputtering. For the first time, the intrinsic kinetics of LiV3O8 thin film electrode is obtained. The DLi+ value is about 10−13 cm2/s in mixed amorphous-nanocrystalline microstructure LiV3O8 thin film. Different to crystalline LiV3O8 thin film, the DLi+ values do not change a lot with the increase of cell potential which is due to the absence of structural phase transition behavior in mixed microstructure LiV3O8 thin film during Li+ insertion/extraction process. This is also the reason for excellent capacity retention performance of LiV3O8 film with a mixed microstructure.  相似文献   

8.
Lei Wen  Qi Lu  Guoxiang Xu 《Electrochimica acta》2006,51(21):4388-4392
This paper describes a novel simple redox process for synthesizing monodispersed MnO2 powders and preparation of spherical LiNi0.5Mn1.5O4 cathode materials by molten salt synthesis (MSS) method. Monodispersed MnO2 powders have been synthesized by using potassium permanganate and manganese sulfate as the starting materials. By using this redox method, it was found that monodispersed MnO2 powders with average particle size ∼5 μm can be easily obtained. Resultant MnO2 and LiOH, Ni(OH)2 was then used to synthesis LiNi0.5Mn1.5O4 cathode materials with retention of spherical particle shape by MSS method. The discharge capacity was 129 mAh g−1 in the first cycle and 127 mAh g−1 after 50 cycles under an optimal synthesis condition for 12 h at 800 °C.  相似文献   

9.
Well-ordered high crystalline LiNi0.5Mn1.5O4 spinel has been readily synthesized by a molten salt method using a mixture of LiCl and LiOH salts. Synthetic variables on the synthesis of LiNi0.5Mn1.5O4, such as synthetic atmosphere, LiCl salt amount, synthetic temperature, and synthetic time, were intensively investigated. X-ray diffraction (XRD) patterns and scanning electron microscopic (SEM) images showed that LiNi0.5Mn1.5O4 synthesized at 900 and 950 °C have cubic spinel structure () with clear octahedral dimension. LiNi0.5Mn1.5O4 spinel phase began to decompose at around 1000 °C accompanied with structural and morphological degradation. LiNi0.5Mn1.5O4 powders synthesized at 900 °C for 3 h delivered an initial discharge capacity of 139 mAh/g with excellent capacity retention rate more than 99% after 50 cycles.  相似文献   

10.
Lithium transport through LiCoO2/Li1−δMn2O4 bilayer film electrode prepared by radio-frequency (rf) magnetron sputtering was investigated in a 1 M solution of LiClO4 in propylene carbonate. From the analyses of the AC-impedance spectra experimentally measured from the Li1−δMn2O4 single-layer and LiCoO2/Li1−δMn2O4 bilayer film specimens, the internal cell resistance of the LiCoO2/Li1−δMn2O4 bilayer film electrode was determined to be smaller in value than that of the Li1−δMn2O4 single-layer film electrode over the whole potential range, which can be accounted for by the kinetic facility for the interfacial charge-transfer reaction in the presence of the more conductive LiCoO2 surface film. Moreover, from the analyses of the anodic current transients measured from both the film specimens, it was suggested that the cell-impedance-controlled constraint at the electrode surface is changed to the diffusion-controlled constraint simultaneously characterised by the large potential step and the small amount of lithium transferred during lithium transport. In addition, in the case of the LiCoO2/Li1−δMn2O4 bilayer film electrode, it was found that the critical value of the applied potential step needed for the mechanism transition is reduced, which strongly indicates that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport. Furthermore, from the comparison of the cathodic current transients measured on the Li1−δMn2O4 single-layer film specimens with various thicknesses, it was experimentally verified that the diffusion resistance is explicitly distinguished from the internal cell resistance.  相似文献   

11.
LiNi0.5Mn1.5O4 spinels coated with various amounts of fumed silica have been synthesized and investigated as cathode materials for high-voltage lithium-ion batteries at the elevated temperature (55 °C). The morphology and structure of the coated LiNi0.5Mn1.5O4 samples were characterized by XRD, TEM and EDX. It was found that the surfaces of the coated LiNi0.5Mn1.5O4 samples are covered with a porous, amorphous, nanostructured SiO2 layer. The results of electrochemical experiments showed that the SiO2-coated LiNi0.5Mn1.5O4 samples display obviously improved capacity retention rate, and the improvement effect enhances with the increase of SiO2 content. The XPS results revealed that the surfaces of the SiO2-coated LiNi0.5Mn1.5O4 cathode materials have relatively low content of LiF, and this is mainly responsible for their improved electrochemical cycling stability.  相似文献   

12.
LiNi0.5Mn1.5O4, a lithium-ion battery cathode material, is prepared using co-precipitation via a two-step drying method with Ni-Mn mixed hydroxide as the precursor. This study examines the effects of precursor pretreatment with hydrazine (a reductant) or with H2O2 (an oxidant) in solutions of NiSO4 and MnSO4. The results indicate substantial differences in the structure and electrochemical properties of LiNi0.5Mn1.5O4 depending on whether the precursor is pretreated with reductant or oxidant. For the hydrazine-treated precursor, the synthesized LiNi0.5Mn1.5O4 has a very pure spinel phase and an ordered, octahedral crystal morphology (ca. 100-300 nm). In contrast, the material synthesized using the H2O2-treated precursor shows numerous impurity phases (Na0.7MnO2.05) with a layer-by-layer crystal structure. The control sample (prepared without precursor pretreatment) maintains an octahedral structure but still retains a few impurity phases of Na0.7MnO2.05. The electrochemical results show that LiNi0.5Mn1.5O4 synthesized using a hydrazine-treated precursor has a higher specific capacity (especially under high discharge current) and a higher cyclic life than the control sample, whereas the sample using H2O2-treated precursor shows almost no special capacity due to changes in crystal structure.  相似文献   

13.
H.Y. Xu 《Electrochimica acta》2006,51(21):4352-4357
LiNi0.5Mn1.5O4 as a 4.7 V-class cathode material was prepared through the radiated polymer gel method that allowed homogeneous mixing of starting materials at the atomic scale. After calcinations of the polymer gels containing the metal salts at different temperatures from 750 to 1150 °C, powders of a pure LiNi0.5Mn1.5O4 phase were obtained. X-ray diffraction and transmission electron microscopy were used to characterize the structures of the powders. Galvanostatic cell cycling and a simultaneous DC resistance measurement were performed on Li/LiNi0.5Mn1.5O4 cells. It is found that the powder calcined at 950 °C shows the best electrochemical performance with the initial discharge capacity of 139 mAh g−1 and 96% retention after 50 cycles. Adopting a slow cooling procedure for the powder calcination can increase the capacity of LiNi0.5Mn1.5O4 at the 4.7 V plateau. Besides, a “w”-shape change of the DC resistance of Li/LiNi0.5Mn1.5O4 cells is a good indication of the structural change of LiNi0.5Mn1.5O4 electrode during charge and discharge courses.  相似文献   

14.
G.Q. Liu  Qilu  W. Li 《Electrochimica acta》2005,50(9):1965-1968
Spinel compound LiNi0.5Mn1.5O4 was synthesized by a chemical wet method. Mn(NO3)2, Ni(NO3)2·6H2O, NH4HCO3 and LiOH·H2O were used as the starting materials. At first, Mn(NO3)2 and Ni(NO3)2·6H2O reacted with NH4HCO3 to produce a precursor, then the precursor reacted with LiOH·H2O to synthesize product LiNi0.5Mn1.5O4. The product showed a single spinel phase under appropriate calcination conditions, and exhibited a high voltage plateau at about 4.6-4.8 V in the charge/discharge process. The LiNi0.5Mn1.5O4 had a discharge specific capacity of 118 mAh/g at about 4.6 V and 126 mAh/g in total in the first cycle at a discharge current density of 2 mA/cm2. After 50 cycles, the total discharge capacity was above 118 mAh/g.  相似文献   

15.
ZnO was coated on LiNi0.5Co0.25Mn0.25O2 cathode (positive electrode) material for lithium ion battery via sol–gel method to improve the performance of LiNi0.5Co0.25Mn0.25O2. The X-ray diffraction (XRD) results indicated that the lattice structure of LiNi0.5Co0.25Mn0.25O2 was not changed distinctly after surface coating and part of Zn2+ might dope into the lattice of the material. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) proved that ZnO existed on the surface of LiNi0.5Co0.25Mn0.25O2. Charge and discharge tests showed that the cycle performance and rate capability were improved by ZnO coating, however, the initial capacity decreased dramatically with increasing the amount of ZnO. Differential scanning calorimetry (DSC) results showed that thermal stability of the materials was improved. The XPS spectra after charge–discharge cycles showed that ZnO coated on LiNi0.5Co0.25Mn0.25O2 promoted the decomposition of the electrolyte at the early stage of charge–discharge cycle to form more stable SEI layer, and it also can scavenge the free acidic HF species from the electrolyte. The electrochemical impedance spectroscopy (EIS) results showed ZnO coating could suppress the augment of charge transfer resistance upon cycling.  相似文献   

16.
A new solution combustion synthesis of layered LiNi0.5Mn0.5O2 involving the reactions of LiNO3, Mn(NO3)2, NiNO3, and glycine as starting materials is reported. TG/DTA studies were performed on the gel-precursor and suggest the formation of the layered LiNi0.5Mn0.5O2 at low temperatures. The synthesized material was annealed at various temperatures, viz., 250, 400, 600, and 850 °C, characterized by means of X-ray diffraction (XRD) and reveals the formation of single phase crystalline LiNi0.5Mn0.5O2 at 850 °C. The morphology of the synthesized material has been investigated by means of scanning electron microscopy (SEM) and suggests the formation of sub-micron particles. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) studies on the synthesized LiNi0.5Mn0.5O2 powders indicate that the oxidation states of nickel and manganese are +2 and +4, respectively. Electrochemical galvanostatic charge-discharge cycling behavior of Li//LiNi0.5Mn0.5O2 cell using 1 M LiPF6 in EC/DMC as electrolyte exhibited stable capacities of ∼125 mAh/g in the voltage ranges 2.8-4.3 V and 3.0-4.6 V and is comparable to literature reports using high temperature synthesis route. The capacity remains stable even after 20 cycles. The layered LiNi0.5Mn0.5O2 powders synthesized by this novel route have several advantages as compared to its conventional synthesis techniques.  相似文献   

17.
X. Fang 《Electrochimica acta》2010,55(3):832-10227
Nano- and micro-sized LiNi0.5Mn1.5O4 particles are prepared via the thermal decomposition of a ternary eutectic Li-Ni-Mn acetate. Lithium acetate, nickel acetate and manganese acetate can form a ternary eutectic Li-Ni-Mn acetate below 80 °C. After further calcination, nano-sized LiNi0.5Mn1.5O4 particles can be obtained at an extremely low temperature (500 °C). When the sintering temperature goes above 700 °C, the particle size increases, and at 900 °C micro-sized LiNi0.5Mn1.5O4 particles (with a diameter of about 4 μm) are obtained. Electrochemical tests show that the micro-sized LiNi0.5Mn1.5O4 powders (sintered at 900 °C) exhibit the best capacity retention at 25 °C, and after 100 cycles, 97% of initial discharge capacity can still be reached. Nano-sized LiNi0.5Mn1.5O4 powders (sintered at 700 °C) perform the best at low temperatures; when cycled at −10 °C and charged and discharged at a rate of 1 C, nano-sized LiNi0.5Mn1.5O4 powders can deliver a capacity as high as 110 mAh g−1.  相似文献   

18.
LiNi0.5Mn1.5O4 powder was synthesized via sol-gel method and coated with ZnO in order to test the electrochemical cyclability of the material as a cathode for the secondary Li battery in the 5 V range at 55 °C. The ZnO-coated LiNi0.5Mn1.5O4 powder nearly maintained its initial capacity of 137 mA h g−1 after 50 cycles whereas the uncoated powder was able to retain no more than 10% of the initial capacity after 30 cycles. TEM analysis of the cycled cathodes suggests that the formation of the graphitic surface phase, hindering the Li migration, may be responsible for the rapid capacity loss of the uncoated material while no such phase was observed on the surface of the ZnO coated LiNi0.5Mn1.5O4 powder.  相似文献   

19.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

20.
The mechanism transition of lithium transport through a Li1−δMn2O4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li1−δMn2O4 and surface-modified Li1−δMn2O4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li1−δMn2O4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li1−δMn2O4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li1−δMn2O4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li1−δMn2O4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号